
SERVICE DESIGN

AS A SET OF RECURRING

ARCHITECTURAL DECISIONS:

PRINCIPLES, PATTERNS AND

PROJECT LESSONS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

4th Computer Science Conference for

University of Bonn Students (CSCUBS)

Bonn, May 17, 2017

Abstract

 Service-oriented computing is a key enabler for major trends such as cloud

computing, Internet of things, and digital transformation. About a decade after

the first wave of Service-Oriented Architecture (SOA) concepts reached a

plateau of maturity, microservices are currently emerging as a state-of-the-art

implementation approach to SOA that leverages recent advances in software

engineering such as domain-driven design, continuous delivery and

deployment automation.

 However, (micro-)service interface design remains a challenge due to the

fallacies of distributed computing. Service designers seek design guidance

and reusable architectural knowledge for this problem domain.

 This presentation first derives the principles and patterns defining the SOA

style from an industrial case study. Next, it establishes seven corresponding

microservices tenets. The presentation then reports on the ongoing

compilation of a service design pattern catalog and discusses tool support for

pattern selection and other architectural decisions. It concludes with a

reflection on research challenges and problems in service-oriented computing,

potential contributions from other fields, as well as general lessons learned

from industrial and academic projects.

© Olaf Zimmermann, 2017.

Page 2

ZIO Past and Present

 Research & development and professional services since 1994

 em. IBM Solution Architect & Research Staff Member

 Systems & Network Management, J2EE, Enterprise Application Integration/SOA

 em. ABB Senior Principal Scientist

 Enterprise Architecture Management/Legacy System Modernization/Remoting

 Selected industry projects and coachings

 Product development and IT consulting (middleware, SOA, information

systems, SE tools); first IBM Redbook on Eclipse/Web Services (2001)

 Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, Web Services/XML

 Focus @ HSR: design of distributed/service-oriented systems

 Cloud computing, Web application development & integration (runtime)

 Model-driven development, architectural decisions (build time)

 (Co-)Editor, Insights column, IEEE Software

 PC member, e.g., ECSA, ESOCC, WICSA, SATURN, SummerSoC

© Olaf Zimmermann, 2017.

Page 3

http://www.redbooks.ibm.com/redbooks/pdfs/sg246292.pdf
http://design.inf.usi.ch/journals/IEEESoftware
https://www.cs.kent.ac.uk/events/2017/ECSA2017/previousyears.html
http://esocc2017.ifi.uio.no/organization.html
http://www.wicsa.net/
https://www.sei.cmu.edu/saturn/2017/
http://www.summersoc.eu/

Software Architecture Essentials: Principles, Patterns, Decisions

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods,

practices,

tools

© Olaf Zimmermann, 2017.

Page 4

Summary of Key Messages (of Parts 1 to 4 of this Presentation)

 To follow:

 Industry case

studies

 SOA style

definition

 Microservices

tenets

 Loose coupling

principle

 4 types

 Granularity

patterns

 3 dimensions

 Architectural

decisions

 ADMentor tool

© Olaf Zimmermann, 2017.

Page 5

Agenda (“3P++”)

1. Introduction to Service-Oriented Computing Paradigms

 Service-Oriented Architecture (SOA) style (deduction from examples)

 Microservices tenets: agile approach to service realization

2. Architectural Principles

 IDEAL cloud application architectures

 Loose coupling, coupling criteria

3. Interface Representation Patterns (IRP)

 Service Granularity (Business/Technical), Quality of Service

 Pagination

4. Architectural Decision Making, Capturing, and Sharing

 Y-statements, ADMentor tool

5. Lessons learned from Projects in Industry and Academia

 Research challenges and vision

© Olaf Zimmermann, 2017.

Page 6

Software Architecture Essentials: Principles, Patterns, Decisions

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods,

practices,

tools

© Olaf Zimmermann, 2017.

Page 7

Sample Information System: Financial Services (Retail Banks)

 Information systems support – and partially automate – business

processes (a.k.a. enterprise applications) to increase profit and cut cost

 E.g. in banking (assess credit risk), insurance (check claim), logistics, …

© Olaf Zimmermann, 2017.

Page 8

Reference: IBM, ACM OOPSLA 2004

Enterprise Application in Telecommunications – IT Architect’s View

© Olaf Zimmermann, 2017.

Page 9

Reference: IBM,

ECOWS 2007

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

Page 10

© Olaf Zimmermann, 2017.

No single definition – “SOA is different things to different people”

 A set of services that a business wants to expose to their

customers and partners, or other portions of the organization.

 An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server).

• “A service is a component with a remote interface.” (M. Fowler)

 A set of architectural patterns such as enterprise service bus,

service composition, and service registry, promoting principles

such as modularity, layering, and loose coupling to achieve design

goals such as separation of concerns, reuse, and flexibility.

• Services have to be discovered

• Service invocations have to be routed, transformed, adapted

• Smaller services have to be stitched together to implement user needs

 A programming and deployment model realized by standards,

tools and technologies such as Web services.

Business

Domain

Analyst

IT

Architect

Developer,

Administrator

Adapted from IBM SOA Solution Stack (S3) reference architecture and SOMA method, https://www-01.ibm.com/software/solutions/soa/

https://www-01.ibm.com/software/solutions/soa/

From Monolith and Components to SOA and (Micro-)Services

Reference: IBM developerWorks – Microservices, SOA, and APIs: Friends or Enemies?

http://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

© Olaf Zimmermann and Mirko Stocker 2017

Page 11

g

http://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

Microservices – An Early and Popular Definition (2014)

 J. Lewis and M. Fowler (L/F): “[…] an approach to developing a single

application as a suite of small services, each running in its own process

and communicating with lightweight mechanisms, often an HTTP

resource API. These services are built around business capabilities and

independently deployable by fully automated deployment machinery.

There is a bare minimum of centralized management of these services,

which may be written in different programming languages and use

different data storage technologies.”

 IEEE Software Interview with J. Lewis, M. Amundsen, N. Josuttis:

Page 12

© Olaf Zimmermann, 2017.

Reference: http://martinfowler.com/articles/microservices.html

(screen captions

are hyperlinks)

http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://martinfowler.com/articles/microservices.html
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

Microservices Definition: 4+1 Viewpoint Mapping (More: CSR&D Paper)

Page 13

© Olaf Zimmermann, 2017.

Application Component

Property (Gartner/TMF)

Mapping to 4+1 Viewpoint

Model (Kruchten 1995)

Mapping to ZIO

Tenet

Novel or “Same Old

Architecture”?

tightly scoped Scenario/Use Case, Logical 1, 2 SOA

strongly encapsulated Logical, Development 1 SOA

loosely coupled Development, Process (Integr.) 1, 3 SOA

independently deployable Process, Physical 1 novel

independently scalable Process, Physical 1 novel

View model

adapted from:

P. Kruchten, 4+1

views on SWA,

IEEE Software.

Seven Tenets for Microservices Approach to SOA (2016/2017)

1. Fine-grained interfaces to single-responsibility units that encapsulate data and

processing logic are exposed remotely to make them independently scalable,

typically via RESTful HTTP resources or asynchronous message queues.

2. Business-driven development practices and pattern languages such as Domain-

Driven Design (DDD) are employed to identify and conceptualize services.

3. Cloud-native application design principles are followed, e.g., as summarized in

Isolated State, Distribution, Elasticity, Automated Management and Loose

Coupling (IDEAL).

4. Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot

persistence strategy; each service implementation has its own data store.

5. Lightweight containers are used to deploy and scale services.

6. Decentralized continuous delivery is practiced during service development.

7. Lean, but holistic and largely automated approaches to configuration and fault

management are employed within an overarching DevOps approach.

© Olaf Zimmermann, 2017.

Page 14

Reference: O. Zimmermann, Microservices Tenets – Agile Approach to Service Development and Deployment,

Proc. Of SummerSoC 2016, Springer Computer Science – Research and Development, 2016 (CSR&D Paper).

http://rdcu.be/mJPz

Why SOA and Microservices?

 Microservices are distributed application components and therefore

IDEALly suited for a cloud deployment

 Isolated State and other IDEAL cloud application properties introduced next

 Microservices work well with agile, self-organized teams that develop

and operate their service(s)

 High velocity due to reduced communication with other teams

 Some technological independence w.r.t. frameworks and programming

Languages

 Improved maintainability, at least in theory:

 Microservices can easily be replaced

 Architecture might be less prone to erosion over time because microservice

boundaries are harder to overcome than in a single codebase.

 But increases runtime complexity (when to decommission a service? versioning?).

 A highly distributed and decentralized deployment and management

approach has potential to increase robustness and resiliency

© Mirko Stocker and Olaf Zimmermann 2017

Seite 15

Architectural Principles define Architectural Styles and Paradigms

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods,

practices,

tools

© Olaf Zimmermann, 2017.

Page 16

IDEAL Cloud Application Properties (Fehling, Leymann et al.)

Distribution: applications are decomposed to…

… use multiple cloud resources

… support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically

Scale out: performance increase through addition of resources

Scale up: performance increase by increasing resource capabilities

? Loose Coupling: influence of application components is limited

Example: failures should not impact other components

Example: addition / removal of components is simplified

Isolated State: most of the application is stateless with respect to:

Session State: state of the communication with the application

Application State: data handled by the application

Automated Management: runtime tasks have to be handled quickly

Example: exploitation of pay-per-use by changing resource numbers

Example: resiliency by reacting to resource failures

© Olaf Zimmermann, 2017.

Page 17

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

SOA Principle and IDEAL Application Property: Loose Coupling

 Practitioner heuristics (a.k.a. coupling criteria) in books, articles, blogs:

 SOA in Practice book by N. Josuttis, O’Reilly 2007

 11 types of (loose) coupling; emphasis on versioning and compatibility

 IBM Redbook SG24-6346-00 on SOA and ESB (M. Keen et al.), IBM 2004

 Coupled vs. decoupled continuum: semantic interface, (business) data model,

QoS (e.g. transactional context, reliability), security

 DZone, IBM developerWorks articles, InfoQ, MSDN, …

 Academic contributions (research results):

 General software engineering/architecture literature since 1960s/1970s

 Starting from D. Parnas (modularization, high cohesion/low coupling)

 WWW 2009 presentation and paper by C. Pautasso and E. Wilde:

 12 facets used for a remoting technology comparison: discovery, state, granularity

 ESOCC 2016 keynote by F. Leymann and PhD theses (e.g. C. Fehling):

 Four types of autonomy: reference (i.e., location), platform, time, format

© Olaf Zimmermann, 2017.

Page 18

http://www.soa-in-practice.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open
http://www.dzone.com/mz/cloud
https://www.infoq.com/architecture/
http://dret.net/netdret/docs/loosely-coupled-www2009/(1)
http://www2009.eprints.org/92/1/p911.pdf
http://esocc2016.eu/keynotes/

 How loosely should the classes/services be coupled?

 From a functional point of view? By autonomy type?

 From a quality perspective: performance,

availability,

security?

Coupling Example in an Online Shop/e-Commerce (0/3)

© Olaf Zimmermann, 2017.

Page 19

 It depends…

 on information need of

the stakeholder(s)

 on IT sourcing and

procurement strategy

 and other executive-

level architectural

decisions

Coupling Example in an Online Shop/e-Commerce (1/3)

© Olaf Zimmermann, 2017.

Page 20

 Service Cut 0: e-commerce monolith

Single program/process

Shared database

Service Boundary

(Remote Interface)

Coupling Example in an Online Shop/e-Commerce (2/3)

© Olaf Zimmermann, 2017.

Page 21

 Service Cut 1: Master Data Separation (Order with Order Items versus

Customer, Product)

Short-lived entities isolated from

long-lasting ones: reference, time,

platform, format autonomy

Coupling Example in an Online Shop/e-Commerce (3/3)

© Olaf Zimmermann, 2017.

Page 22

 Service Cut 2: Domain-Driven Design Aggregates (Order, Customer, Product)

Domain-Driven Decomposition:

Coupling Criteria?

Granularity Patterns?

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, Jhipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsiblities are

shown.

Coupling Criteria (CC) in “Service Cutter” (Ref.: ESOCC 2016)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

© Olaf Zimmermann, 2017.

Page 24

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

From Style Tenets and Principles to (Architectural) Patterns

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods,

practices,

tools

© Olaf Zimmermann, 2017.

Page 25

What is “Micro” a.k.a. How Small is (too) Small?

 Judging from the name, the size of a microservice seems to be an

important criterion – but how to define/measure it?

 Optimal size of a microservice is not measured in Lines of Code (LoC)

 The size of a microservice should be chosen such that it can be

 Developed (and operated => DevOps?) by a single team

 Fully understood by each developer on the team

 Replaced by a new implementation if necessary

 On the other hand, it should not be too small

 Communication and deployment overhead

 Transactions spanning multiple microservices are hard to manage

 The same is true for data consistency (consistency boundaries)

Jeff Bezos’s Two-Pizza Rule for optimal team size

© Mirko Stocker and Olaf Zimmermann 2017

Seite 26

http://www.telegraph.co.uk/business/2016/10/12/amazons-two-pizza-rule-isnt-as-zany-as-it-sounds/

What belongs in a Microservice?

 A microservice should be large enough to contain the data it needs to

operate – and loosely coupled with others

 New or changed business requirements should ideally lead to changes

in just a single microservice (including the user interface)

 Example:

 An e-commerce order management service should also handle the order

data. In addition, it will also need access to customer data and product

information to fulfill its responsibilities.

 Which data should the order management service own and control?

 Only transactional data such as order items, bill, delivery?

 Or master data as well (customer, products)?

Be careful not to end up with a (distributed) monolith again!

© Mirko Stocker and Olaf Zimmermann 2017

Seite 27

Service Granularity Test (by Example)

 Test: Do the exemplary services qualify as microservices?

 “small” (Lewis/Fowler) and “fine grained” (Netflix, ZIO)?

 “having a single responsibility” (R. Martin)?

 “being maintainable by a 2-pizza team” (J. Bezos)?

 supporting IDEAL principles such as loose coupling (Fehling et al, ZIO)?

 Example A: Exchange Rates in YaaS/Hybris (SAP):

 https://devportal.yaas.io/services/exchangerates/latest/

 Example B: Create Goods and Activity Confirmations (SAP B. by Design)

 https://help.sap.com/doc/saphelp_byd1702_en/2017.02/en-

US/PUBLISHING/PSM_ISI_R_II_APGACFM_GOODS_CONF_IN.html

 Example C: Create an Outbound Delivery with a Reference to a Sales

Order (in ESA/Hana via SAP Business Hub)

 https://api.sap.com/#/catalog/a7a325f837df42f8a5c1083890e28801/II_SHP

_OUTBOUNDDELIVERYCWRRC/SOAP

© Olaf Zimmermann, 2017.

Page 28

https://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.telegraph.co.uk/business/2016/10/12/amazons-two-pizza-rule-isnt-as-zany-as-it-sounds/
https://devportal.yaas.io/services/exchangerates/latest/
https://help.sap.com/doc/saphelp_byd1702_en/2017.02/en-US/PUBLISHING/PSM_ISI_R_II_APGACFM_GOODS_CONF_IN.html
https://api.sap.com/#/catalog/a7a325f837df42f8a5c1083890e28801/II_SHP_OUTBOUNDDELIVERYCWRRC/SOAP

Service Granularity in Scientific Literature and Practice Reports

 Business granularity (a.k.a. semantic density) has a major impact on

agility and flexibility, as well as maintainability

 Position of service operation in business architecture, e.g., expressed in a

Component Business Model (CBM) or enterprise architecture model

 Amount of business process functionality covered

 Entire process? Subprocess? Activity?

 Number and type of analysis-level domain model entities touched

 Technical granularity (a.k.a. syntactic weight) determines runtime

characteristics such as performance and scalability, interoperability –

but also maintainability and flexibility

 Number of operations in WSDL contract, number of REST resources

 Structure of payload data in request and response messages

 QoS entropy adds to the maintenance effort of the service component

 Backend system dependencies and their properties (e.g. consistency)

 Security, reliability, consistency requirements (coupling criteria)

© Olaf Zimmermann, 2017.

Page 29

https://en.wikipedia.org/wiki/Component_business_model

Granularity Scores by Service Pattern and Granularity Type

© Olaf Zimmermann, 2017.

Page 30

4

2

1

5

33

5

1

2

44

1

2

5

3

0

1

2

3

4

5

6

Busines Transaction
(Activity)

Entity Search Status Check Master Data CRUD Periodic Report

Service Granularity Scores (Relative, 1 to 5 Scale)

Semantic Density Syntactic Weight QoS Entropy (Transactionality, Security, Reliability)

CRUD – Create, Read, Update, Delete; QoS – Quality of Service

Granularity Types and Criteria – Observations and Findings

 Sometimes granularity is also seen as an architectural principle:

 https://en.wikipedia.org/wiki/Service_granularity_principle

 Granularity is property of service contract exposed by a service provider

 Not an exact measure/metric, but a heuristic/an indicator of modularity and

cohesion (on different levels of abstraction)

 Business granularity vs. technical granularity (syntax, QoS)

 Can’t really tell the “right” size w/o use cases and (de)coupling criteria –

“it depends” (again):

 Clients, contexts, concerns differ – for good reasons!

 Service semantics, information need of consumer

 Hidden complexity (backend, relations)

 Conclusion: A continuum of service granularity patterns exists

 There is no such thing as a “right” service size for all systems and service

ecosystems – but the candidate service cuts can be captured as patterns

© Olaf Zimmermann, 2017.

Page 31

https://en.wikipedia.org/wiki/Service_granularity_principle

Towards an Interface Representation Pattern Language (IRP)

Page 32

© Olaf Zimmermann, 2017.

Foundations

Web API Design and

Evolution (WADE)

Service Identification

(Process)

Service Evolution (Lifecycle Management)

.Core Service Design
Content

(Semantic

Density)

Delivery

(QoS

Entropy)

Representation

(Syntactic Weight)

Cross

Cutting

Concerns

Basic

Remote Service

Abstractions

API Styles

and Types

Service

Coupling

Criteria

Interface Facets/

Granularity Types

Candidate Patterns in IRP (Work in Progress)

Page 33

© Olaf Zimmermann, 2016.

Category

Foundations Vertical Integration,

Horizontal Integration

Public API Community API Solution-Internal

API

Process Contract First Static Discovery Dynamic Discovery Service Model

Representation AtomicParameter

(Single Scalar, Dot)

Parameter Tree

(Single Complex)

Atomic Parameter

List (Multip. Scalars,

Dotted Line)

ParameterComb

(Multiple Complex)

Pagination, Page Query Parameter Cursor Offset

Wish List Request Deck Metadata

Parameter

Annotated

Parameter List

Content

Semantics
Command Service Reporting Service Status Check Master Data

Update

QoS Service Contract,

Context Object

SLA-SLO API Key/Access

Token

Rate Limit

Evolution Semantic Versioning,

Version Identifier

Two (Versions) in

Production

Aggressive

Deprecation

Liberal Receiver/

Conservative

Sender

Reference: O. Zimmermann et al., Interface Representation Patterns, accepted for EuroPLOP 2017 (under shepherding)

http://www.europlop.net/content/conference-0

Example IRP: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can a provider transmit large amounts of repetitive or inhomogeneous

response data to a consumer that do not fit well in a single response

message?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 34

© Olaf Zimmermann, 2017.

Example IRP: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses:

 Public APIs of social networks

Page 35

© Olaf Zimmermann, 2017.

Selecting and Adopting Patterns Requires Decision Making

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods,

practices,

tools

© Olaf Zimmermann, 2017.

Page 36

AD Modeling with Reuse – Context and Motivation (by Example)

 AD capturing matters, e.g. ISO/IEC/IEEE 42010 has a rationale element

 But it remains an unpopular documentation task

– particularly, but not only in agile communities

 Effort vs. gain (“feeding the beast”)?

 Example (from cloud application design): Session State Management

 Shopping cart in online commerce SaaS (e.g., Amazon) has to be stored

while user is logged in; three design options described in literature

“In the context of the Web shop service, facing the need to keep user session data

consistent and current across shop instances, we decided for the Database Session

State Pattern from the PoEAA book (and against Client Session State or Server

Session State) to achieve ideal cloud properties such as elasticity, accepting that a

session database needs to be designed, implemented, and replicated.”
Reference: (WH)Y-template first presented at SEI SATURN 2012 and later published in IEEE Software and InfoQ,

http://www.infoq.com/articles/sustainable-architectural-design-decisions

(inspired by decision part in George Fairbanks’ Architecture Haiku, WICSA 2011 tutorial)

© Olaf Zimmermann, 2017.

Page 37

http://www.iso-architecture.org/42010/
http://martinfowler.com/eaaCatalog/index.html
http://www.infoq.com/articles/sustainable-architectural-design-decisions

From Decisions Made to Decisions Required (Guidance)

 Approach: Refactor decision capturing templates into problem-option-

driver fragments and change tone, to separate concerns and to ease reuse

“In the context of the Web shop service, facing the need to keep user session data consistent and

current across shop instances, we decided for the Database Session State Pattern from the PoEAA

book (and against Client Session State or Server Session State) to achieve cloud elasticity, accepting

that a session database needs to be designed, implemented, and replicated.”

 “When designing a stateful user conversation (for instance, a shopping basket

in a Web shop), you will have to decide whether and how session state is

persisted and managed.” (question: is this a requirement or stakeholder concern?)

 “Your conceptual design options will be these patterns: Client Session State,

Server Session State, and Database Session State.”
(question: are patterns the only types of options in AD making?)

 “The decision criteria will include development effort and cloud affinity.”
(question: what else influences the decision making?)

© Olaf Zimmermann, 2017.

Page 38

Curate {decision need, solutions, qualities} for

reuse – but not the actual decision outcomes

http://martinfowler.com/eaaCatalog/index.html

IRP Selections (a.k.a. Service Design Space) in ADMentor

 Patten selection and

adoption qualifies as

AD making

 Rationale to be

captured: qualities,

conformance with

principles, etc.

 Guidance through

service design

space via problem-

option pair modeling

 In ADMentor

© Olaf Zimmermann, 2017.

Page 39

ProblemSpace IRP Problem Space Diagram

Service Identification
Method

Resource-Based OOAD

Analyis-Level BPM

API Call Design

Application of Chosen
Method Returns API
Endpoint Plan listing
API Calls

Message Exchange
Pattern

Request ReplyOne Way

Message Exchange
Format

JSON

XML

Out Message
Granularity

In Message
Granularity

Atomic Parameter Atomic Parameter List Parameter Tree Parameter Comb

Pagination Pattern

Cursor-Based

None Offset-Based

Additional Pattern Selection and
Adoption Decisions (separate diagrams):

 Expansion Pattern Usage (e.g., Wish
List)?

 Metadata Parameters

 Rate LImit

 SLA-SLO

 etc.

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adRaises»

«adAddressedBy»

«adRaises»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»«adAddressedBy»«adAddressedBy»

ADMentor Tool (AddIn to Sparx Enterprise Architect, “UML++”)

 ADMentor is openly available at https://github.com/IFS-HSR/ADMentor

 Project website http://www.ifs.hsr.ch/index.php?id=13201&L=4

© Olaf Zimmermann, 2017.

Page 40

https://github.com/IFS-HSR/ADMentor
http://www.ifs.hsr.ch/index.php?id=13201&L=4

Key Take Away Messages (Position Summary)

 Services are here to stay, but microservices do not constitute a new style

 Microservices evolved as an implementation approach to SOA that leverages

recent advances in agile practices, cloud computing and DevOps

 Microservices Architecture (MSA) constrains the SOA style to make services

independently deployable and scalable (e.g., via decentralization)

 Architectural principles and patterns characterize architectural styles

 e.g. loose coupling is a key SOA principle (multiple dimensions)

 There is no single definite answer to the “what is the right granularity?”

question, which has several context-specific dimensions and criteria

 Business granularity: semantic density (role in domain model and BPM)

 Technical granularity: syntactic weight and QoS entropy

 Platform-independent service design can benefit from Interface

Representation Patterns such as Pagination, Wish List, Master Data CRUD

 Pattern-centric service design involves architectural decisions that recur

© Olaf Zimmermann, 2017.

Page 41

Service Design Science – Towards a Research Roadmap

 My take on future trend in SoC/service design:

 Overarching knowledge question: How to adopt existing and new computer

science research results for the context of agile Web/service engineering?

 “Long live services – of various kinds and granularities” (ZIO, 2016)

© Olaf Zimmermann, 2017.

Page 42

CS Field Contribution Type(s)

Software engineering, SoC Design by contract, MDSE, value networks

Databases, Information Systems Representation modeling, query languages

Networking Protocol design (conversations), contract verification

(Interoperability. conformance testing)

Business Process Management and

Modeling (BPM)

Service identification in static and dynamic business

models, composition middleware

Distributed Systems,

Telecommunication Networks

Event-driven, reactive, adaptive architectures,

service discovery, metering and billing

Internet Technologies, Web Engineering Semantic (micro-)service linking (not matchmaking)

Theoretical Computer Science Formal definitions: SOA/MSA, service, MEP, etc.

http://rdcu.be/mJPz

SOA/Microservices and Semantic Big Data Management

 REST maturity level 3 makes HATEOAS mandatory for any Web API that

claims to be RESTful, which requires typed links

 Original vision of the Semantic Web by Tim Berners-Lee

 HTTP API or Web API vs. RESTful HTTP API or Hypermedia API

 Domain-Driven Design is about modeling the business domain the

microservices and end user applications target

 Can be seen as a “poor man’s ontology”

 Automation of provisioning etc. requires an understanding of the

configuration scripts etc.

 Which is understandable for humans and machines

 DevOps produces large amounts of distributed monitoring data

 Containers, network, integration middleware, databases, etc.

 Complex event processing and adaptive systems as advanced usage

scenarios with built in dynamism (“on demand”, runtime decisions)

 Auto scaling in the cloud; ad hoc service discovery and matchmaking (?)

© Olaf Zimmermann, 2017.

Page 43

Agenda (“3P++”)

1. Introduction to Service-Oriented Computing Paradigms

 Service-Oriented Architecture (SOA) style

 Microservices tenets: agile approach to service realization

2. Architectural Principles

 IDEAL cloud application architectures

 Loose coupling, coupling criteria

3. Interface Representation Patterns (IRP)

 Service Granularity (Business/Technical), Quality of Service

 Pagination

4. Architectural Decision Making, Capturing, and Sharing

 Y-statements, ADMentor tool

5. Lessons learned from Projects in Industry and Academia

 Research challenges and vision

© Olaf Zimmermann, 2017.

Page 44

Lessons Learned: Academia (Paper and Thesis Writing)

 Follow a recognized

research method

 E.g. Empirical

 E,g. Design Science

Methodology (DSM)

 Action research and

other validation forms

 Take a look at other

papers/theses

 Same advisor

 Same 2nd advisor

 PC chairs/members

in target community

© Olaf Zimmermann, 2017.

Page 45

(screen caption is hyperlink)

https://www.ifs.hsr.ch/index.php?id=13194&L=4
https://www.ifs.hsr.ch/index.php?id=13194&L=4

Olaf Zimmermann

Generalization of Practical Problems into Research Problems

 Abstract from practice, solve,

instantiate

 Validation type to be picked wisely

 Iterative and incremental approach ok

 Finding good names matters… and is

hard (iterate!)

 Research problem: noun (like pattern),

research questions

 Solution building block (contribution):

noun (like a component in an

architecture)

 Research contribution spectrum:

 New problem and solution vs. new

solution to existing problem (more

efficient, more elegant, improvements in

other quality attributes)

46

© Olaf Zimmermann, 2017.

Problem vs. Solution

P
ra

c
ti

c
e
 v

s
.
R

e
s
e
a
rc

h

Scoping Applied Research – Patterns and Anti Patterns

 Use-case or user story driven vs. “solution seeking problem”

 Interdisciplinary work (“über den Tellerrand schauen”) vs. trend surfing

 Solving a conceptually hard problem vs. making problem look hard

 Dedication to quality vs. “just a prototype” excuse for bugs and lack of

usability

 Apply your own research results during your research

 Recognized research methods (for design science):

 Design Science Methodology (DSM) by R. Wieringa (e.g. problem

statement template, knowledge questions)

 Writing good software engineering research papers by M. Shaw

 Empirical approaches

IS-Architekturentscheidungen Page 47

© Olaf Zimmermann, 2017.

https://wwwhome.ewi.utwente.nl/~roelw/
http://www.csie.ntpu.edu.tw/~dalton/images/teacher/Technical_Writing/writing.pdf

Some Questions to Expected (from Advisor and Peer Reviewers)

 During thesis projects, you will be asked a lot of questions like:

 “Why do we need X, and why do we need it here”?

 “Why do you call it X and not Y (a little earlier you called it X’)?

 “How does X relate to X-1, X-2, …, to X+1, X+2, …, and to Y?”

 “How do you know that X is correct, and where do you show that?”

 “Where does X come from, your contribution or literature”?

 “Is X complete or are there any X+1, X+2”?

 “Is X on right level of abstraction or do you mix X, sub-X, super-X”?

 …

 So far, so good…

 … the problem is that X, X’, Y is element of {{word}, {sentence}, {bullet list},

{figure}, {table}, {paragraph}, {section}, {chapter}} in papers and thesis  

 So X can be text snippet – and concepts too

48

© Olaf Zimmermann, 2017.

Some “Hot Buttons”…

 Quality over quantity

 E.g. page quota: n pages or m words (opinions vary)

 Don’t structure thesis too deeply – 3 to 4 levels of headings at most

 Everything that applies for papers is still valid

 Structure: Context/problem/solution/why a solution/why better than

everybody else’s

 Intellectual Property Rights (IPR)/copyright ownership, research ethics

 Keep figures simple and consistent, and explain them in surrounding

text

 Few colors/shadings, if any

 Arrow semantics (solid line vs. dashed line)

 Name the standard notation that you use, or provide a legend for IRPs

 Colons and parenthesis are good to tell reader what is coming

 Avoid any editorial sloppiness – typos, inconsistencies, gaps

49

© Olaf Zimmermann, 2017.

… More “Hot Buttons”

 Purity and clarity over verbosity (in language)

 No filler adjectives/adverbs (“works in principle”, “more or less”)

 No exaggerations (“how high is highly positive”)?

 But keep reader interested, indicate logical flow of text by keywords

 Eloquence is appreciated (e.g. “application genre”)

 One message/one thought at a time (high cohesion/low coupling like in

software design)

 One message per sentence

 One aspect/topic per paragraph

 Order matters (there is no unordered list/no set in technical writing)

 Avoid Wikipedia citations, or Web portals like IBM developerWorks

 Apart from that, quality matters more than source (which is still relevant)

 Journal, conference, workshop hierarchy; known names, seminal works

 Try to be broad in terms of communities, age, etc.

 Cite what supervisors cite; respect current style at your university/institute/group

50

© Olaf Zimmermann, 2017.

… Even More “Hot Buttons”

 Provide rationale to demonstrate maturity (“Durchdringungsgrad”)

 Why this criterion and no other? Why this design?

 If you claim something, does that mean everything else is wrong?

 If you declare something to be out of scope, say why, and/or where done

(you/others)

 Show purpose and value of individual parts of your work

 What does the reader do with the information you just provided?

 How is it used later in the thesis?

 How does it change the world (value), see e.g. DSM template

 Provide the “big picture” – how do thesis parts work together?

 Pick your vocabulary consciously

 Shows that you are in command of the literature

 As many terms as needed, but not more; simple, unambiguous names

 Use consistently, avoid synonyms and homonyms

 Avoid forward references if possible

51

© Olaf Zimmermann, 2017.

52
Olaf Zimmermann

… Finally Some of ZIO’s Ones (Valid for any Publication)

 Tell your story five times:

 TOC/structure, text highlights (definitions, bullet lists), examples, figures/tables, full

text – but in a consistent manner (semantic references)

 Let intermediate drafts sit for a while to refresh your perspective

 Helps you to read from reader’s perspective (e.g., abstract, intro and summary only)

 Read the TOC only – it must tell the full story (exec. summary, speed readers)

 Order bullet lists and other enumerations consciously and consistently

 E.g. by application time, by project phase, by importance, by dependency

 Phrase all bullets or other elements in the same way (verb, noun, -ing form)

 Don’t underestimate the copy editing – tedious, but worth the effort

 Be peculiar… any bug you find will not annoy your supervisor and other readers 

 Tackle in phases – figure captions only, indentation only, index only, etc.

52© Olaf Zimmermann, 2017.

Lessons Learned: Industry (Five Cs and Counting)

 Context matters

 Client wants and needs

to be distinguished

 Stakeholders concerns

to be elicited

 Common sense to be

applied

 Collaboration is

essential

© Olaf Zimmermann, 2017.

Page 53

(screen caption is hyperlink)

https://www.ifs.hsr.ch/index.php?id=13195&L=4
https://www.ifs.hsr.ch/index.php?id=13195&L=4

Skills and Traits of Consultants

 Ability to listen

 Active, multiple times, …

 Ability to ask

 Ask the right questions, and ask them right

 Ability to say no

 In a constructive way – almost everything can be built if budget is there

 Ability to deal with incomplete and conflicting information

 Curiosity (domains, people, business models, …)

 Get-the-job-done mentality (due date, bug fix, political turmoil)

 Ability to travel (schedule, location issues?)

 Humor, flexibility, helper attitude; other social skills

© Olaf Zimmermann, 2017.

Page 54

IT Consultant Tenets and Code of Conduct (ZIO Top 5)*

 Marketing Opens Doors – Technical Excellence Creates Opportunities

 Conferences, articles, academic degrees, continued education

 Responsiveness Expected by Client

 “Blitz chess” metaphor: when the client has been active, you get active too

 Context Matters and Wants vs. Needs Differ

 Kruchten’s Octopus dimensions: do not blindly transfer “best” practices

 Articulated requirements do not always equal actual requirements

 End-to-End Systems Thinking Required

 DevOps, maintenance team, education needs when new tech. is used

 Trust is Foundation for Long Term Success

 Establish early and sustain it (needed for critical project situations)

 Transfer knowledge (to client, to peers), do not hide it

© Olaf Zimmermann, 2017.

Page 55

* Inspired by Gregor Hohpe’s Beliefs (presented in his ECSA 2014 keynote)

http://ecsa2014.cs.univie.ac.at/files/ECSA2014-Keynote-Hohpe.pdf

Software Architecture and Software Engineering Resources

Page 56

© Olaf Zimmermann, 2017.

(screen captions is hyperlink)

https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.computer.org/csdl/mags/so/2016/06/index.html
https://www.computer.org/csdl/mags/so/2016/06/index.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214

SERVICE DESIGN

AS A SET OF RECURRING

ARCHITECTURAL DECISIONS:

PARADIGMS, PRINCIPLES, PATTERNS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

Service Design and Service Granularity –

BACKGROUND INFORMATION

May 2017

Characteristics from L/F Definition Analyzed and Compared

Page 58

© Olaf Zimmermann, 2017.

Characteristic Viewpoint/Qualities/Benefit SOA Pendant

Componentization via

services

Logical Viewpoint (VP): separation of

concerns improves modifiability

Service provider, consumer,

contract (same concept)

Organized around business

capabilities

Scenario VP: OOAD domain model and

DDD ubiquitous language make code

understandable and easy to maintain

Part of SOA definition in books

and articles since 200x (e.g.

Lublinsky/Rosen)

Products not projects n/a (not technical but process-related) (enterprise SOA programs)

Smart endpoints and dumb

pipes

Process Viewpoint (VP): information

hiding improves scalability and

modifiability

Same best practice design rule

exists for SOA/ESB (see e.g.

here)

Decentralized governance n/a (not technical but process-related) SOA governance (might be

more centralized, but does not

have to; “it depends”)

Infrastructure automation Development/Physical VP: speed No direct pendant (not style-

specific, recent advances)

Design for failure All VPs: robustness Key concern for distributed

systems, SOA or other

Evolutionary design n/a (not technical but process-related):

improves replaceability, upgradeability

Service design methods,

Backward compatible contracts

http://www-935.ibm.com/services/us/cio/pdf/wp_five-best-practices-for-deploying-successful-soa.pdf

SOA Principles and Patterns vs. Microservices Tenets

Page 59

© Olaf Zimmermann, 2017.

Aspect/Capability SOA Principles and Patterns Microservices Tenets and Patterns

Core metaphor (Web) Service, Service Contract Fine-grained interfaces, RESTful resources

Method OOAD/UP; SOMA and others Domain-Driven Design, agile Practices

Architectural principles Layering, loose coupling, flow

independence, modularity

IDEAL Cloud Architectural Principles

Data storage Information Services (RDB, File) Polyglot Persistence (NoSQL, NewSQL)

Deployment and hosting Virtual machines, JEE, SCA;

Application Hosting/Outsourcing

Lightweight Containers (e.g., Docker,

Dropwizard); Cloud Computing

Build tool chain n/a (proprietary vendor

approaches, custom developed

in-house assets, ITIL and other

management frameworks)

Decentralized Continuous Delivery

Operations (FCAPS) Lean but Comprehensive System

Management (a.k.a. DevOps)

Message routing,

transformation, adaption

Enterprise Service Bus (ESB) API Gateway, lightweight messaging

systems (e.g., RabbitMQ)

Service composition Service Composition DSLs, POPL Plain Old Programming Language (POPL)

Lookup Service Registry Service Discovery

Reference: O. Zimmermann, Microservices Tenets – Agile Approach to Service Development and Deployment,

Proc. Of SummerSoC 2016, Springer Computer Science – Research and Development, 2016.

http://rdcu.be/mJPz

Microservices – Literature and Resources

 “Building Microservices”, S. Newman (O’Reilly 2016)

 Sample chapters available online (free of charge)

 “Microservices” (auf deutsch), E. Wolf, dpunkt 2016

 http://dpunkt.de/a2016_downl/Microservices.pdf

 InfoQ Microservices zone

 http://www.infoq.com/microservices

 Microservices pattern languages (emerging):

 http://microservices.io/patterns/microservices.html

 http://blog.arungupta.me/microservice-design-patterns/

 http://samnewman.io/patterns/

 SEI SATURN 2015 workshop

 https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

© Olaf Zimmermann, 2017.

Page 60

http://dpunkt.de/a2015_downl/Microservices.pdf
http://www.infoq.com/microservices
http://microservices.io/patterns/microservices.html
http://blog.arungupta.me/microservice-design-patterns/
http://samnewman.io/patterns/
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

