SERVICE DESIGN
AS A SET OF RECURRING
ARCHITECTURAL DECISIONS:
PRINCIPLES, PATTERNS AND
PROJECT LESSONS

4th Computer Science Conference for
University of Bonn Students (CSCUBS)

Bonn, May 17, 2017
Prof. Dr. Olaf Zimmermann (ZIO)
Certified Distinguished (Chief/Lead) IT Architect

Institute fur Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Abstract

M Service-oriented computing is a key enabler for major trends such as cloud
computing, Internet of things, and digital transformation. About a decade after
the first wave of Service-Oriented Architecture (SOA) concepts reached a
plateau of maturity, microservices are currently emerging as a state-of-the-art
implementation approach to SOA that leverages recent advances in software
engineering such as domain-driven design, continuous delivery and
deployment automation.

m However, (micro-)service interface design remains a challenge due to the
fallacies of distributed computing. Service designers seek design guidance
and reusable architectural knowledge for this problem domain.

B This presentation first derives the principles and patterns defining the SOA
style from an industrial case study. Next, it establishes seven corresponding
microservices tenets. The presentation then reports on the ongoing
compilation of a service design pattern catalog and discusses tool support for
pattern selection and other architectural decisions. It concludes with a
reflection on research challenges and problems in service-oriented computing,
potential contributions from other fields, as well as general lessons learned
from industrial and academic projects.

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 2
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

™ The Open Group
pert
Certified

Distinguished Architect

Z10 Past and Present

B Research & development and professional services since 1994

em. IBM Solution Architect & Research Staff Member

Systems & Network Management, J2EE, Enterprise Application Integration/SOA
em. ABB Senior Principal Scientist

Enterprise Architecture Management/Legacy System Modernization/Remoting

m Selected industry projects and coachings

Product development and IT consulting (middleware, SOA, information
systems, SE tools); first IBM Redbook on Eclipse/Web Services (2001)

Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, Web Services/XML

m Focus @ HSR: design of distributed/service-oriented systems
Cloud computing, Web application development & integration (runtime)
Model-driven development, architectural decisions (build time)
(Co-)Editor, Insights column, IEEE Software
PC member, e.g., ECSA, ESOCC, WICSA, SATURN, SummerSoC

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 3 .

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

http://www.redbooks.ibm.com/redbooks/pdfs/sg246292.pdf
http://design.inf.usi.ch/journals/IEEESoftware
https://www.cs.kent.ac.uk/events/2017/ECSA2017/previousyears.html
http://esocc2017.ifi.uio.no/organization.html
http://www.wicsa.net/
https://www.sei.cmu.edu/saturn/2017/
http://www.summersoc.eu/

Software Architecture Essentials: Principles, Patterns, Decisions

Business Goal

Design Goal

refined by (Intent)
B Business goals promoted by SRl
and design goals \
. Par ad | g m S par{a-:iag'g:;i?le characerized by A";:i::‘i-::leﬁl
(defined by tenets)
. P rl n C I p I es U pp-urr_r./ c;cterized =atisfi Ed{
by
m Patterns \\
Method or Architectural
u DeC | S | 0 n S Practice guides selection and adoption of Pattern
o
selects and justifies
® Methods, —
practices, realizedin e
tOO|S 5elemandju5tiﬁesf
Technology or
Asset
B HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 4 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

SOFTWARE

Summary of Key Messages (of Parts 1 to 4 of this Presentation)

Agility : Business Flexibility: Design B To follow:
Goal Goal [Intent)
Industry case
studies
SOA style
SOA: Paradigm or Loose Coupling: deﬁn itiOn
SglejviaTenEfls! Arch.ite!:tural .)
| i Granulsrityis = Microservices
T S reveepepery, tenets
Q/ ofa rEIatiun bEtﬁl'ul'EEI'I .
— i o Loose coupling
Paradigm or Style principle
]waTenE'Is!
| 4 types
Coarse-Grained Fine-Grained .
{Semantically {Syntactically Light] Granu Iarlty
DEFE-E!S-EF‘H‘iL‘E Semvice Interface
Interface Content: Representation: patterns
Architectural Architectural
Pattern Pattern 3 dimensions
Architectural
Qo5-Driven S5ervice deCISlonS
Cut: Architectural
B ADMentor tool
- HSR INSTITUTE FOR
HOCHSCHULE FUR TECHNIK P 5 :
. . RAPPERSWIL age ° SOFTWARE

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

Agenda (“3P++7)

1. Introduction to Service-Oriented Computing Paradigms

Service-Oriented Architecture (SOA) style (deduction from examples)
Microservices tenets: agile approach to service realization

2. Architectural Principles
IDEAL cloud application architectures
Loose coupling, coupling criteria

3. Interface Representation Patterns (IRP)
Service Granularity (Business/Technical), Quality of Service
Pagination

4. Architectural Decision Making, Capturing, and Sharing
Y-statements, ADMentor tool

5. Lessons learned from Projects in Industry and Academia

Research challenges and vision

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 6
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Software Architecture Essentials: Principles, Patterns, Decisions

Business Goal Design Goal
refined by (Intent)
B Business goals T o
and design goals 77 \
. Par ad | g m S par{a-:iag'g:;i?le characerized by A"::::::-::L“'
(defined by tenets)
o 7~ 7
B Principles I chrarscterized satisfied by
by
m Patterns \\
Method or Architectural
u DeC | S | 0 n S Practice guides selection and adoption of Pattern
o
selects and justifies
® Methods,

. remlizeed ir Architectural
praCtlceS, Decision
tOO|S 5elemandju5tiﬁesf

Technology or
Asset
B HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 7 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

SOFTWARE

Sample Information System: Financial Services (Retail Banks)

Reference: IBM, ACM OOPSLA 2004

| Websphers Bl

Web Services Wizardry

with WebSphere Studio
Application Developer

“Creating dynamic e-business with Web
sarvices

“Using the IBM toolset for Web -
sarvices

“introduction to
ViebSphere Studio

ibm.com/redbooks

®m Information systems support —and partially automate — business

Platf WSDL
in: e;;r:d ent Java Client .NET ;ient Browser Ofﬁch Q—
IBM
WebSphere® SOAP SOAP SOAP
(pSeries)
generate
Web Services Adapter Layer (<
Java™ API (Dynamic Interface)

]

o Java Backend Connectors &BM WebSphere MQ, CICS®)

5

'

©

=

==

-

generate
o

IBM CICS
(zSeries)

Repository

processes (a.k.a. enterprise applications) to increase profit and cut cost

E.g. in banking (assess credit risk), insurance (check claim), logistics, ...

O HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 8

© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

Enterprise Application in Telecommunications — IT Architect’s View

Multi-Channel Order Management SOA in the Telecommunications
Industry (in production since Q1/2005) [OOPSLA 2003] Reference: IBM,

ECOWS 2007

* Functional domain Interface granularity (WSDL contract design)?

Client Web Services Channel
Message- or transport layer encryption ? E 4

?

— Order entry management

Presen-
— Two business processes: tation - | .
new customer, relocation Channel | WS Fagades
b obliedd — Main SOA drivers: deeper ~_controller [#Ewsor. e ===

Stefan Peuser [7

fivity Stub 1 —’<i>—' Actiity Stubn @

= automation grade, share Bus
Perspectives on services between domains 5 >"o"

- Process >
Web Services = Service design Layer Transaction boundaries inside process? e /'a
A PIYINE SOAR WS DL anC | Which BPM/workflow engine to use? | -
— Top-down from requirement Short Running o poo B:F" BH
and bottom-up from existing Process Activity =Tt
wholesaler systems Activities) TR pctivny == =
R - Implementation n L s b
— Recurring architectural Business o
decisions: services L Message exchange pattern?
« Protocol choices “Application Tran‘c’p?'t p:’tow'? _____
. . Services "
« Transactionality S ___________________ﬁ[_____ S
- Security policies Core Business ﬂaa %%
. ems Objects
« Interface granularity Syst : s e
11 Zurich Research Laboratory © 2007 IBM Corporation
™ HSR ! &
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 9 ®
. . RAPPERSWIL ° SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

No single definition — “SOA is different things to different people”

Business
Domain
Analyst

» A set of services that a business wants to expose to their
customers and partners, or other portions of the organization.

» An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server). IT
Architect

« “A service is a component with a remote interface.” (M. Fowler)

» A set of architectural patterns such as enterprise service bus,
service composition, and service registry, promoting principles
such as modularity, layering, and loose coupling to achieve design
goals such as separation of concerns, reuse, and flexibility.

* Services have to be discovered Developer,
- Service invocations have to be routed, transformed, adapted Administrator
« Smaller services have to be stitched together to implement user needs

» A programming and deployment model realized by standards,
tools and technologies such as Web services.

Adapted from IBM SOA Solution Stack (S3) reference architecture and SOMA method, https://www-01.ibm.com/software/solutions/soa/

O HSR
. . HOCHSCHULE FUR TECHNIK Page 10

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

https://www-01.ibm.com/software/solutions/soa/

From Monolith and Components to SOA and (Micro-)Services

P o ——— ——

/

#

Microservice Microservice
component component

Microservice
component

A g
o
“ Silo logic 9

Illl’ IIII’

T T e e e e T

e o e m mm mm mm ome mm Ee wm m— w

Monolithic

N e e e e o o e o e e e e e e e e e e e e e e e e o

R Internally
application
PP componentized
application
Microservices
application

Reference: IBM developerWorks — Microservices, SOA, and APIs: Friends or Enemies?
http://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 11

FHO Fachhochschule Ostschweiz © Olaf Zimmermann and Mirko Stockel’ 2017

INSTITUTE FOR
SOFTWARE

http://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

Microservices — An Early and Popular Definition (2014)

Reference: http://martinfowler.com/articles/microservices.html

m J. Lewis and M. Fowler (L/F): “[...] an approach to developing a single
application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capabilities and
independently deployable by fully automated deployment machinery.
There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use

different data storage technologies.”

B |EEE Software Interview with J. Lewis, M. Amundsen, N. Josuttis:

INSIGHTS

(screen captions

are hyperlinks) Microservices in

Practice, Part 1

Microservices in Reality Check and Service Design
P ract 1C e 3 Pa rt 2 Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis

Service Integration and Sustainability

Microservices are in many ways a
best-practice approach for realizing
service-oriented architecture.

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 12

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://martinfowler.com/articles/microservices.html
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

Microservices Definition: 4+1 Viewpoint Mapping (More: CSR&D Paper)

Application Component Mapping to 4+1 Viewpoint Mapping to ZIO
Property (Gartner/TMF) Model (Kruchten 1995) Tenet

Novel or “Same Old
Architecture”?

tightly scoped Scenario/Use Case, Logical SOA
strongly encapsulated Logical, Development 1 SOA
loosely coupled Development, Process (Integr.) 1,3 SOA
independently deployable Process, Physical 1 novel
independently scalable Process, Physical 1 novel

Logical VP (Functional)

Development VP
(Build Time Maintenance Qualities)

—

VP (Business, Test)

/ScenariolUse Case

Process VP (Runtime Qualities)

Physical VP (Operational Qualities)

View model
adapted from:
P. Kruchten, 4+1
views on SWA,
IEEE Software.

O HSR
. . HOCHSCHULE FUR TECHNIK Page 13

RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Seven Tenets for Microservices Approach to SOA (2016/2017)

Fine-grained interfaces to single-responsibility units that encapsulate data and
processing logic are exposed remotely to make them independently scalable,
typically via RESTful HTTP resources or asynchronous message queues.

Business-driven development practices and pattern languages such as Domain-
Driven Design (DDD) are employed to identify and conceptualize services.

Cloud-native application design principles are followed, e.g., as summarized in
Isolated State, Distribution, Elasticity, Automated Management and Loose
Coupling (IDEAL).

Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot
persistence strategy; each service implementation has its own data store.

Lightweight containers are used to deploy and scale services.
Decentralized continuous delivery is practiced during service development.

Lean, but holistic and largely automated approaches to configuration and fault
management are employed within an overarching DevOps approach.

Reference: O. Zimmermann, Microservices Tenets — Agile Approach to Service Development and Deployment,
Proc. Of SummerSoC 2016, Springer Computer Science — Research and Development, 2016 (CSR&D Paper).

. . HOCHSCHULE FUR TECHNIK Page 14

HSR
INSTITUTE FOR

SOFTWARE

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

http://rdcu.be/mJPz

Why SOA and Microservices?

m Microservices are distributed application components and therefore
IDEALIly suited for a cloud deployment

Isolated State and other IDEAL cloud application properties introduced next

® Microservices work well with agile, self-organized teams that develop
and operate their service(s)

High velocity due to reduced communication with other teams

Some technological independence w.r.t. frameworks and programming
Languages

Improved maintainability, at least in theory:

Microservices can easily be replaced

Architecture might be less prone to erosion over time because microservice
boundaries are harder to overcome than in a single codebase.

But increases runtime complexity (when to decommission a service? versioning?).

® A highly distributed and decentralized deployment and management
approach has potential to increase robustness and resiliency

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Seite 15
FHO Fachhochschule Ostschweiz © Mil’kO StOCker and Olaf Zimmermann 2017

INSTITUTE FOR
SOFTWARE

Architectural Principles define Architectural Styles and Paradigms

Business Goal

Design Goal

refined by (Intent)
B Business goals T o
and design goals \béa
. Par ad | g m S par{a-:iag'g:;i?le characerized by A"::::::-::L“'
(defined by tenets)
4
. P I’I n C I p | eS U pp-urr_r./ c;cterized =atisfi Ed/b]r
by
m Patterns \\
Method or Architectural
u DeC | S | 0 n S Practice guides selection and adoption of Pattern
E-]E-EE and justifies
® Methods,

. remlizeed ir Architectural
praCtlceS, Decision
tOO|S 5elemandju5tiﬁesf

Technology or
Aszet
B HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 16 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

SOFTWARE

IDEAL Cloud Application Properties (Fehling, Leymann et al.)

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.ora/

Isolated State: most of the application is stateless with respect to:
Session State: state of the communication with the application
Application State: data handled by the application

Distribution: applications are decomposed to...
... use multiple cloud resources
—

... support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically
Scale out: performance increase through addition of resources
Scale up: performance increase by increasing resource capabilities

Automated Management: runtime tasks have to be handled quickly
(:;.-»Q Example: exploitation of pay-per-use by changing resource numbers

Example: resiliency by reacting to resource failures

? Loose Coupling: influence of application components is limited
H Example: failures should not impact other components
Example: addition / removal of components is simplified
: u E’:?:gwf FUR TECHNIK Page 17 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

http://cloudcomputingpatterns.org/

SOA Principle and IDEAL Application Property: Loose Coupling

®m Practitioner heuristics (a.k.a. coupling criteria) in books, articles, blogs:

SOA in Practice book by N. Josuttis, O’Reilly 2007
11 types of (loose) coupling; emphasis on versioning and compatibility
IBM Redbook SG24-6346-00 on SOA and ESB (M. Keen et al.), IBM 2004

Coupled vs. decoupled continuum: semantic interface, (business) data model,
QoS (e.g. transactional context, reliability), security

DZone, IBM developerWorks articles, InfoQ, MSDN, ...

m Academic contributions (research results):

General software engineering/architecture literature since 1960s/1970s
Starting from D. Parnas (modularization, high cohesion/low coupling)
WWW 2009 presentation and paper by C. Pautasso and E. Wilde:
12 facets used for a remoting technology comparison: discovery, state, granularity
ESOCC 2016 keynote by F. Leymann and PhD theses (e.g. C. Fehling):

Four types of autonomy: reference (i.e., location), platform, time, format

O HSR
. . HOCHSCHULE FUR TECHNIK Page 18

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://www.soa-in-practice.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open
http://www.dzone.com/mz/cloud
https://www.infoq.com/architecture/
http://dret.net/netdret/docs/loosely-coupled-www2009/(1)
http://www2009.eprints.org/92/1/p911.pdf
http://esocc2016.eu/keynotes/

Coupling Example in an Online Shop/e-Commerce (0/3)

® How loosely should the classes/services be coupled?

From a functional point of view? By autonomy type?
From a quality perspective: performance,

Purchase Order
- status:int ava"ab'“ty,
- totalAmount: int “-_____h SeCUI‘It o)
1 T——___| Order ltem y '
- -
1L 1 + amount: int
+ discount:int
Market Segment
i 1. Product Catalog
- accountManager:int =
- productManager: Person
\ . . /
Customer Product

B J/tdepends...
+ cid:5tring

+ address:5tring

+ haslLoyaltyCard: boolean

+

id: GUID
name: ManufacturerLabel
deliveryTime: int

+

on information need of
the stakeholder(s)

on IT sourcing and
procurement strategy

+

Retail Customer

+ firstName: 5tring

Wholesale Customer

+ taxMumber: GUID

and other executive-
level architectural

+ lastMame: String + name: CompanyNamestring dECiSionS
B HSR
HOCHSCHULE FUR TECHNIK Page 19 e INSTITUTE FOR
. . RAPPERSWIL o SOFTWARE

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

Coupling Example in an Online Shop/e-Commerce (1/3)

B Service Cut 0;: e-commerce monolith

Service Boundary
(Remote Interface)

Purchase Order Order ltem
- status:int “p—— + amount:int
- totalAmount:int 1 1.% &+ dizcount:int
a.*
Market Segment P - log
- scooumMwe - preductManager: Person
\ 1 /l
Customer Product
+ cid:String + id: GUID
+ address: String + name: ManufacturerLabel
+ haslLoyaltyCard: boolean + deliveryTime:int
Retail Customer Wholesale Customer S | /
+ firstName: 5tring + taxNumber: GUID Ing € program proceSS
+ lastMame: 5tring + name: CompanyNameString Shared database
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
. . RAPPERSWIL Page 20 :

© Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

SOFTWARE

Coupling Example in an Online Shop/e-Commerce (2/3)

m Service Cut 1. Master Data Separation (Order with Order Items versus
Customer, Product)

Purchase Order Order ltem
status: int "7 + amount: int
totalAmount: int 1 1%« discount: int

X 0.* \1
/ |

Market Segment e log

accountManager: int

v .

- preductManager: Person

Customer Product
+ cid:String + id: GUID
+ address: 5tring + name: ManufacturerLabel
+ haslLoyaltyCard: boolean + deliveryTime: int
——— ——— Short-lived entities isolated from
+ RestiEmESi |+ vxiermberGHIES long-lasting ones: reference, time
+ lastName:5tring + name: CompanyMNamestring) ! !

platform, format autonomy

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 21 M
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

Coupling Example in an Online Shop/e-Commerce (3/3)

m Service Cut 2: Domain-Driven Design Aggregates (Order, Customer, Product)

Purchase Order Order ltem
status: int "7 + amount: int
totalAmount: int 1 1%« discount: int

X 0.* \1
i |

Market Segment e log

accountManager: int

v .

- preductManager: Person

Customer Product
+ cid:String + id: GUID
+ address: String + name: ManufacturerLabel
+ hasloyaltyCard: boolean + deliveryTime: int
Retail Customer Wholesale Customer Domain-Driven Decomposition:
+ firstName: 5tring + taxMumber: GUID Coupllng Cl’ltel‘la?
+ lastName:5tring + name: CompanyMNamestring

Granularity Patterns?

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 22 M
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

[HOCHSCHULE FUR TECHNIK Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

RAPPERSWIL

. . COMPUTER SCIENCE

(_s\, Advisor: Prof. Dr. Olaf Zimmermann
ii ’:
Bachelor Thesis Fall Term 2015 ZUhIke -

Co-Examiner: Prof. Dr. Andreas Rinkel

empowering ideas

Software Lukas Kolbener Michael Gysel Project Partner: Zuhlke Engineering AG

A Software Architect’s Dilemma....

e Con | | Compatibility | I Conatraimts | | Communication
O Step 1: Analyze System senar :

) — Entity-relationship model I | I I
How do | split - Use case; - EaaEaa
. — System characterizations BTy
my system into — Aggregates (DDD)
services? o o
Coupling information is Pralen

extracted from these artifacts.

Step 2: Calculate Coupling |

— Data fields, operations and artifacts

are nodes. Step 3:
— Edges are coupled data fields. Visualize Service Cuts [Sumiee < 8 - i
— Scoring system calculates edge ‘ m . . - a 7,“ -
weights. — Priorities are used to

— Two different graph clustering reflect the context.

Cutter
algorithms calculate candidate - Published Language vt [T
service cuts (=clusters). (DDD) and use case oty
oo -
N7 responsiblities are . o A
N |~ ~ B Fommnk o .~]
AN X shown. | = ™ o B
(e ‘\\ _2) . B
AN A S N i
) ¥ O ot]
"flé*{\:%m\‘ X o -
AN) o . Gompatlbility Criteria
_ Ao@}:&\ \ TN e
\‘\‘_\'y‘ Technologies: e Cansistency Cricaly
Java, Maven, Spring (Core, FE—

Boot, Data, Security, MVC),
Hibernate, Jersey, Jhipster,
AngularJS, Bootstrap

A clustered (colors) graph. https://github.com/ServiceCutter

Coupling Criteria (CC) in “Service Cutter” (Ref.. ESOCC 2016)

Cohesiveness

Constraints

Communication

Consistency .-
Constraint [Mutability
Security Network Traffic
Constraint Suitability

Semantic
Proximity Shared Owner
Identity &
Lifecycle Latency
Commonality - o
h J i N
Security
Contextuality

Compatibility
Structural Content
Volatility Volatility
Consistency Availability
Criticality Criticality
Storage Security
Similarity Criticality

Predefined
Service
Constraint

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

m E.g. Semantic Proximity can be observed if:

Service candidates are accessed within same use case (read/write)

Service candidates are associated in OOAD domain model

® Coupling impact (note that coupling is a relation not a property):

Change management (e.qg., interface contract, DDLS)

Creation and retirement of instances (service instance lifecycle)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 24
© Olaf Zimmermann, 2017.

INSTITU

TE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

From Style Tenets and Principles to (Architectural) Patterns

Business Goal Design Goal
refined by (Intent)
B Business goals TR S
and design goals \
. Par ad | g m S pa"ﬁi“:g:‘:;?“? characerized by Ar;:"::::-:::;“'
(defined by tenets)
. P rl n C I p I es _r,,up.p.u.rﬂ',/ c;{terized 5ati5ﬁEd{
h]r\
H Patterns A 2
Method or Architectural
u DeC | S | 0 n S Practice guides selection and adoptionjof Pattern
= d justifi
g and justifies
Em Methods, |
. e lmed i Architectural
praCtlceS, Decision
tOO|S 5elemandju5tiﬂesf
Technology or
Aszset
B HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 25 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

SOFTWARE

What is “Micro” a.k.a. How Small is (too) Small?

® Judging from the name, the size of a microservice seems to be an
important criterion — but how to define/measure it?

Optimal size of a microservice is not measured in Lines of Code (LoC)

B The size of a microservice should be chosen such that it can be

Developed (and operated => DevOps?) by a single team
Fully understood by each developer on the team
Replaced by a new implementation if necessary

® On the other hand, it should not be too small

Communication and deployment overhead
Transactions spanning multiple microservices are hard to manage
The same is true for data consistency (consistency boundaries)

Jeff Bezos’s Two-Pizza Rule for optimal team size

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Seite 26 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Mil’kO StOCker and Olaf Zimmermann 2017 SOFTWARE

http://www.telegraph.co.uk/business/2016/10/12/amazons-two-pizza-rule-isnt-as-zany-as-it-sounds/

What belongs in a Microservice?

® A microservice should be large enough to contain the data it needs to
operate — and loosely coupled with others

® New or changed business requirements should ideally lead to changes
in just a single microservice (including the user interface)

B Example:

An e-commerce order management service should also handle the order
data. In addition, it will also need access to customer data and product
information to fulfill its responsibilities.

® Which data should the order management service own and control?

Only transactional data such as order items, bill, delivery?
Or master data as well (customer, products)?

Be careful not to end up with a (distributed) monolith again!

0 HSR
HOCHSCHULE FUR TECHNIK .
B E e Seite 27

FHO Fachhochschule Ostschweiz © Mil’kO StOCker and Olaf Zimmermann 2017

INSTITUTE FOR
SOFTWARE

Service Granularity Test (by Example)

m Test: Do the exemplary services qualify as microservices?

“small” (Lewis/Fowler) and “fine grained” (Netflix, Z1O)?

“having a single responsibility” (R. Martin)?

“being maintainable by a 2-pizza team” (J. Bez0s)?

supporting IDEAL principles such as loose coupling (Fehling et al, ZIO)?

m Example A: Exchange Rates in YaaS/Hybris (SAP):
https://devportal.yaas.io/services/exchangerates/latest/

m Example B: Create Goods and Activity Confirmations (SAP B. by Design)

https://help.sap.com/doc/saphelp byd1702 en/2017.02/en-
US/PUBLISHING/PSM ISI R Il APGACFM GOODS CONF IN.html

m Example C: Create an Outbound Delivery with a Reference to a Sales
Order (in ESA/Hana via SAP Business Hub)

https://api.sap.com/#/catalog/a7a325f837df42f8a5¢1083890e28801/I1 SHP
OUTBOUNDDELIVERYCWRRC/SOAP

M HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 28 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

https://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.telegraph.co.uk/business/2016/10/12/amazons-two-pizza-rule-isnt-as-zany-as-it-sounds/
https://devportal.yaas.io/services/exchangerates/latest/
https://help.sap.com/doc/saphelp_byd1702_en/2017.02/en-US/PUBLISHING/PSM_ISI_R_II_APGACFM_GOODS_CONF_IN.html
https://api.sap.com/#/catalog/a7a325f837df42f8a5c1083890e28801/II_SHP_OUTBOUNDDELIVERYCWRRC/SOAP

Service Granularity in Scientific Literature and Practice Reports

B Business granularity (a.k.a. semantic density) has a major impact on
agility and flexibility, as well as maintainability

Position of service operation in business architecture, e.g., expressed in a
Component Business Model (CBM) or enterprise architecture model

Amount of business process functionality covered
Entire process? Subprocess? Activity?
Number and type of analysis-level domain model entities touched

m Technical granularity (a.k.a. syntactic weight) determines runtime
characteristics such as performance and scalability, interoperability —
but also maintainability and flexibility

Number of operations in WSDL contract, number of REST resources
Structure of payload data in request and response messages

® QoS entropy adds to the maintenance effort of the service component

Backend system dependencies and their properties (e.g. consistency)
Security, reliability, consistency requirements (coupling criteria)

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 29 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

https://en.wikipedia.org/wiki/Component_business_model

Granularity Scores by Service Pattern and Granularity Type

CRUD - Create, Read, Update, Delete; QoS — Quality of Service

Service Granularity Scores (Relative, 1 to 5 Scale)

6
5 5 5
5
4 4 4
4
3 3 3
3
2 2 2
2
1 g
| I I
0
Busines Transaction Entity Search Status Check Master Data CRUD Periodic Report
(Activity)
Semantic Density m Syntactic Weight m QoS Entropy (Transactionality, Security, Reliability)

B HSR
EE :AD::Esﬂcsrlell.-E FUR TECHNIK Page 30 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

Granularity Types and Criteria — Observations and Findings

B Sometimes granularity is also seen as an architectural principle:
https://en.wikipedia.org/wiki/Service qgranularity principle

m Granularity is property of service contract exposed by a service provider

Not an exact measure/metric, but a heuristic/an indicator of modularity and
cohesion (on different levels of abstraction)

Business granularity vs. technical granularity (syntax, QoS)

m Can’t really tell the “right” size w/o use cases and (de)coupling criteria —
“it depends” (again):
Clients, contexts, concerns differ — for good reasons!

Service semantics, information need of consumer
Hidden complexity (backend, relations)

m Conclusion: A continuum of service granularity patterns exists

There is no such thing as a “right” service size for all systems and service
ecosystems — but the candidate service cuts can be captured as patterns

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 31 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

https://en.wikipedia.org/wiki/Service_granularity_principle

Towards an Interface Representation Pattern Language (IRP)

API Styles
Foundations and Types

Basic
Remote Service
Abstractions

Service
Coupling
Criteria

Web API Design and
Evolution (WADE)

Service ldentification
(Process)

Core Service Design

Representation
(Syntactic Weight)

Content Delivery
(Semantic (QoS
Density) Entropy)

Service Evolution (Lifecycle Management)

Interface Facets/
Granularity Types

Cross
Cutting
Concerns

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 32
© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

Candidate Patterns in IRP (Work in Progress)

_category | | |

Foundations

Process

Representation

Content
Semantics

QoS

Evolution

Vertical Integration,
Horizontal Integration

Contract First

AtomicParameter
(Single Scalar, Dot)

Pagination, Page

Wish List

Command Service

Service Contract,
Context Object

Semantic Versioning,
Version ldentifier

Public API
Static Discovery
Parameter Tree

(Single Complex)

Query Parameter

Request Deck

Reporting Service

SLA-SLO

Two (Versions) in
Production

Community API

Dynamic Discovery

Atomic Parameter
List (Multip. Scalars,
Dotted Line)

Cursor

Metadata
Parameter

Status Check

API Key/Access
Token

Aggressive
Deprecation

Solution-Internal
API

Service Model

ParameterComb
(Multiple Complex)

Offset

Annotated
Parameter List

Master Data
Update

Rate Limit

Liberal Receiver/
Conservative
Sender

Reference: O. Zimmermann et al., Interface Representation Patterns, accepted for EuroPLOP 2017 (under shepherding)

O HSR

RAPPERSWIL

HOCHSCHULE FUR TECHNIK

FHO Fachhochschule Ostschweiz

Page 33

© Olaf Zimmermann, 2016.

INSTITUTE FOR
SOFTWARE

http://www.europlop.net/content/conference-0

Example IRP: Pagination (1/2)

m Context
An API endpoint and its calls have been identified and specified.

B Problem

How can a provider transmit large amounts of repetitive or inhomogeneous
response data to a consumer that do not fit well in a single response
message?

B Forces

Data set size and data access profile (user needs), especially number of
data records required to be available to a consumer

Variability of data (are all result elements identically structured? how often
do data definitions change?)

Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)
Security and robustness/reliability concerns

O HSR
. . HOCHSCHULE FUR TECHNIK Page 34

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Example IRP: Pagination (2/2)

P
(——)
Il
e

B Solution [:
Divide large response data sets into manageable and easy-to-transmit chunks.

Send only partial results in the first response message and inform the consumer
how additional results can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as
needed; agree on a request correlation and intermediate/partial results
termination policy on consumer and provider side.

Legend: Request R M y
(Query) (Query Result) (from EIP)

B Variants @ @ @)l

Result Record Set)

Cursor-based vs. offset-based

Endpoint API Provider Data Store
(e.g.. RDBMS, NoSQL, EIS)

B Consequences

E.g. state management required Pravs f—j @ (), 12, (13
_ /_/ — Pwk (10}
® Know Uses: - IR N
Page 3 (18} E18 - Entorprse Information System
Public APIs of social networks = % B
B HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 35 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

Selecting and Adopting Patterns Requires Decision Making

Business Goal Design Goal
refined by (Intent)

B Business goals TR S

and design goals \
. Par ad | g m S pa"ﬁi“:g:‘:;?“? characerized by Ar;:"::::-:::;“'

(defined by tenets)
. P rl n C I p I es _r,,up.p.u.rﬂ',/ c;{terized 5ati5ﬁEd{

by
m Patterns \
Method or Architectural
u DeC | S | 0 n S Practice guides selection and adoption of Pattern
Mo
selects and justifies

® Methods,

. realized in Ar{hit‘?'?tuml
praCtlceS, Decision
tOO|S selects and justifi |

Technology or
Azzet
B HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 36 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz

SOFTWARE

© Olaf Zimmermann, 2017.

AD Modeling with Reuse — Context and Motivation (by Example)

m AD capturing matters, e.g. ISO/IEC/IEEE 42010 has a rationale element

But it remains an unpopular documentation task
— patrticularly, but not only in agile communities

Effort vs. gain (“feeding the beast”)?
m Example (from cloud application design): Session State Management

Shopping cart in online commerce SaaS (e.g., Amazon) has to be stored
while user is logged in; three design options described in literature

Message
sessionlD sessionlD
Client - P> Server
R D ——
L 7

“In the context of the Web shop service, facing the need to keep user session data
consistent and current across shop instances, we decided for the Database Session

v State Pattern from the POEAA book (and against Client Session State or Server
Session State) to achieve ideal cloud properties such as elasticity, accepting that a
session database needs to be designed, implemented, and replicated.”

Reference: (WH)Y-template first presented at SEI SATURN 2012 and later published in IEEE Software and InfoQ,
http://www.infog.com/articles/sustainable-architectural-design-decisions
(inspired by decision part in George Fairbanks’ Architecture Haiku, WICSA 2011 tutorial)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 37
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://www.iso-architecture.org/42010/
http://martinfowler.com/eaaCatalog/index.html
http://www.infoq.com/articles/sustainable-architectural-design-decisions

From Decisions Made to Decisions Required (Guidance)

m Approach: Refactor decision capturing templates into problem-option-
driver fragments and change tone, to separate concerns and to ease reuse

current across shop instances, we decided for the Database Session State Pattern from the POEAA
book (and against Client Session State or Server Session State) to achieve cloud elasticity, accepting

¥ “In the context of the Web shop service, facing the need to keep user session data consistent and
that a session database needs to be designed, implemented, and replicated.”

Curate {decision need, solutions, qualities} for
reuse — but not the actual decision outcomes

“When designing a stateful user conversation (for instance, a shopping basket
in a Web shop), you will have to decide whether and how session state is
persisted and managed.” (question: is this a requirement or stakeholder concern?)

“Your conceptual design options will be these patterns: Client Session State,

Server Session State, and Database Session State.”
(question: are patterns the only types of options in AD making?)

“The decision criteria will include development effort and cloud affinity.”
(question: what else influences the decision making?)

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 38
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://martinfowler.com/eaaCatalog/index.html

IRP Selections (a.k.a. Service Design Space) in ADMentor

m Patten selection and
adoption qualifies as
AD making

Rationale to be
captured: qualities,
conformance with
principles, etc.

® Guidance through
service design
space via problem-
option pair modeling

In ADMentor

4 Elements

(} Problem
(> Option
£ Problem Space Package

ProblemSpace IRP Problem Space Diagram /

Application of Chosen Service Identification

Method Returns API Method
Endpoint Plan listing «adAddressedBy»
API Calls
«adAddressedBy» | «adAddressedBy»
- ~

Analyis-Level BPM

Resource-Based «adRaises» 00AD
JSON
«adAddressedBy»
Message Exchange
API| Call Design Farinei
«adRaises»
«adRaises» N
«adAddressedBy»
Z \ XML
Message Exchange
Pattern «adRaises»
Pagination Pattern
«adAddressedBy»«adAddressedBy»
N
* «adAddressedBy» Cursor-Based
One Way Request Reply
«adAddressedBy«adAddressedBy»
«adRaises» «adRaises» «adRaises»
~
h g None Offset-Based
In Message Out Message
Granularity Granularity
«adAddressedBy» dAddressedBy»y»idressedB«adAddressedBy»icadAddressedBy» Additional Pattern Selection and
Adoption Decisions (separate diagrams):
. Expansion Pattern Usage (e.g., Wish
List)?
* Metadata Parameters
Atomic Parameter Atomic Parameter List Parameter Tree Parameter Comb * Rate LImit

. SLA-SLO
e etc

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 39
© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

ADMentor Tool (AddIn to Sparx Enterprise Architect, “UML++")

m ADMentor is openly available at https://github.com/IES-HSR/ADMentor

Architectural Decision Guidance across Projects
Problem Space Modeling, Decision Backlog Management and Cloud Computing Knowledge

Olaf Zimmermann, Lukas Wegmann Heiko Koziolek, Thomas Goldschmidt
Institute for Software Regearch Area Software
Hochschule fiir Techmik (HSR. FHO) ABB Corporate Research
Rapperswil, Switzerland Ladenburg, Germany
{firstname lastname} @hsr.ch {firstname lastname} @de.abb.com

?
(- f=—®p—{ ~) - My version (the Y-approach): (WH)Y -

i = In the context of <use case/user story u=, facing <concern c>,

T T we decided for <option o> to achieve <quality g=>

= These Y-statements yield a bullet list of open/closed (design) issues
(link to project managementl)

- Can go to appendix of software architecture document, notes attached
to UML model elements, spreadsheet, team space, or wiki

Al

m Project website http://www.ifs.hsr.ch/index.php?id=13201&L=4

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 40 °
B E e - SOFTWARE

© Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

https://github.com/IFS-HSR/ADMentor
http://www.ifs.hsr.ch/index.php?id=13201&L=4

Key Take Away Messages (Position Summary)

Services are here to stay, but microservices do not constitute a new style

Microservices evolved as an implementation approach to SOA that leverages
recent advances in agile practices, cloud computing and DevOps

Microservices Architecture (MSA) constrains the SOA style to make services
independently deployable and scalable (e.g., via decentralization)

Architectural principles and patterns characterize architectural styles
e.g. loose coupling is a key SOA principle (multiple dimensions)

There is no single definite answer to the “what is the right granularity?”
guestion, which has several context-specific dimensions and criteria

Business granularity: semantic density (role in domain model and BPM)
Technical granularity: syntactic weight and QoS entropy

Platform-independent service design can benefit from Interface
Representation Patterns such as Pagination, Wish List, Master Data CRUD

Pattern-centric service design involves architectural decisions that recur

HSR

HOCHSCHULE FUR TECHNIK Page 41
RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Service Design Science — Towards a Research Roadmap

CS Field Contribution Type(s)

Software engineering, SoC Design by contract, MDSE, value networks

Databases, Information Systems Representation modeling, query languages

Networking Protocol design (conversations), contract verification
(Interoperability. conformance testing)

Business Process Management and Service identification in static and dynamic business

Modeling (BPM) models, composition middleware

Distributed Systems, Event-driven, reactive, adaptive architectures,

Telecommunication Networks service discovery, metering and billing

Internet Technologies, Web Engineering Semantic (micro-)service linking (not matchmaking)

Theoretical Computer Science Formal definitions: SOA/MSA, service, MEP, etc.

m My take on future trend in SoC/service design:

Overarching knowledge question: How to adopt existing and new computer
science research results for the context of agile Web/service engineering?

“Long live services — of various kinds and granularities” (ZIO, 2016)

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 42

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://rdcu.be/mJPz

SOA/Microservices and Semantic Big Data Management

m REST maturity level 3 makes HATEOAS mandatory for any Web API that
claims to be RESTful, which requires typed links

Original vision of the Semantic Web by Tim Berners-Lee
HTTP API or Web API vs. RESTful HTTP API or Hypermedia API

® Domain-Driven Design is about modeling the business domain the
microservices and end user applications target

Can be seen as a “poor man’s ontology”

® Automation of provisioning etc. requires an understanding of the
configuration scripts etc.

Which is understandable for humans and machines

m DevOps produces large amounts of distributed monitoring data
Containers, network, integration middleware, databases, etc.

m Complex event processing and adaptive systems as advanced usage
scenarios with built in dynamism (“on demand”, runtime decisions)

Auto scaling in the cloud; ad hoc service discovery and matchmaking (?)

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 43

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Agenda (“3P++7)

1. Introduction to Service-Oriented Computing Paradigms
Service-Oriented Architecture (SOA) style
Microservices tenets: agile approach to service realization
2. Architectural Principles
IDEAL cloud application architectures
Loose coupling, coupling criteria
3. Interface Representation Patterns (IRP)
Service Granularity (Business/Technical), Quality of Service
Pagination
4. Architectural Decision Making, Capturing, and Sharing
Y-statements, ADMentor tool

5. Lessons learned from Projects in Industry and Academia

Research challenges and vision

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 44 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

Lessons Learned: Academia (Paper and Thesis Writing)

m Follow arecognized
research method

E.g. Empirical

E,g. Design Science
Methodology (DSM)

Action research and
other validation forms

m Take alook at other
papers/theses

Same advisor
Same 2"d advisor
PC chairs/members
in target community

(screen caption is hyperlink)

Projekte

Entwickler Tools
Cevelop
C++ Refactoring
Cute
Linticator
Includator
Sconsolidator

Scala

Repara

App Quest

= GISpunkt

Architectural Knowledge

Management (AKM)
Architectural
Knowledge Hubs
Method Selection and
Tailoring (Best-
of-Breed)

ADMentor Tool

Wanted: Your Insights,
Stories and Experience

Reports

Technical Writing and
Research Advice

Architectural Refactoring
for the Cloud (ARC)

Cloud Knowledge
Sources
Microservices
Resources and
Positions

Domain-Driven Design
(DDD)

DevOps Resources and

Positions

Technical Writing and Research Advice
Tips and Tricks for Improving Your Research Output

The ARC project team found the following resources useful:
1. Writing for Busy People, a rambling by G. Hohpe lists some essentials and
suggests books
. Mastering Scientific and Medical Writing - A Self-Help Guide by S. Rogers,
Springer-Verlag (you might be able to find a POF version elsewhere)

]

w

. Texten fir die Technik, A. Baumert and A. Verhein-Jarren, Springer-Verlag (in
German)

4. Corresponding project plans, updates, results online? Avoid some common
e-mail anti patterns.

. Last but not least in this list: a pointers to information about netiguette.

4]

The patterns community also has a lot to offer when it comes to technical writing
{and knowledge sharing):
1. The Hillside Group gives advice here (e.g. there is a pattern languages for

pattern writing)
2. Ward Cunningham’s Wiki is rich in content (by the way, this is first wiki that
has *ever* been built)

w

. Linda Rising’s Pattern Almanac lists and summarizes patterns published prior
to 2000

4. Bobby Woolf, one of the authors of Enterprise Integration Patterns, blogs here
(or used to blog...); he also gives presentations on pattern authoring

. Writer's Workshops are an intense way to improve technical writing (not just
patterns)

5]

For more patterns history, watch_Pattern History Stories from Generative Films or
read Twenty Years of Patterns’ Impact, by G. Hohpe, R. Wirfs-Brock, 1. Yoder,
and 0. Zimmermann, IEEE Software, Wolume 30, Number & (2013].

For advice on research projects and thesis writing, start here:
1. Tips and links compiled by M. Jazaveri, USI Lugano

2. How to organize a thesis, 1. W. Chinneck, Carleton
3. How to do research, 5. Miksch, TU Vienna

When planning and executing validation activities, make sure to follow the
guidelines in the Mini Tutorial by M. Shaw from ICSE 2003, Writing Good Scoftware
Engineering Reszearch Papers and/or this presentation by I. Crnkovic. The Design
Science Methdology and supportging tutorials by R. Wieringa give even more
advice. This Technical Report from the SEI has information on how to conduct
=surveys. A former editor-in-chief of IEE Software writes about how to write high
guality papers (for IEEE Software).

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 45

INSTITUTE FOR
SOFTWARE

© Olaf Zimmermann, 2017.

https://www.ifs.hsr.ch/index.php?id=13194&L=4
https://www.ifs.hsr.ch/index.php?id=13194&L=4

Generalization of Practical Problems into Research Problems

m Abstract from practice, solve,
instantiate

Validation type to be picked wisely

lterative and incremental approach ok Problem vs. Solution

B Finding good names matters... and is
hard (iterate!)

Research problem: noun (like pattern),
research guestions

Solution building block (contribution):
noun (like a component in an
architecture)

Practice vs. Research

m Research contribution spectrum:

New problem and solution vs. new
solution to existing problem (more
efficient, more elegant, improvements in
other quality attributes)

M HSR

HOCHSCHULE FUR TECHNIK

B caerersw 46
FHO Fachhochschule Ostschweiz © Ola.f Zimmermann, 2017

INSTITUTE FOR
SOFTWARE

Scoping Applied Research — Patterns and Anti Patterns

B Use-case or user story driven vs. “solution seeking problem”
®m Interdisciplinary work (“liber den Tellerrand schauen”) vs. trend surfing
m Solving a conceptually hard problem vs. making problem look hard

m Dedication to quality vs. “just a prototype” excuse for bugs and lack of
usability

m Apply your own research results during your research

m Recognized research methods (for design science):

Design Science Methodology (DSM) by R. Wieringa (e.g. problem
statement template, knowledge questions)

Writing good software engineering research papers by M. Shaw

Empirical approaches

HSR

HOCHSCHULE FUR TECHNIK H H
RAPPERSWIL IS-Architekturentscheidungen Page 47

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

https://wwwhome.ewi.utwente.nl/~roelw/
http://www.csie.ntpu.edu.tw/~dalton/images/teacher/Technical_Writing/writing.pdf

Some Questions to Expected (from Advisor and Peer Reviewers)

m During thesis projects, you will be asked a lot of questions like:

“Why do we need X, and why do we need it here™?

“Why do you call it X and not Y (a little earlier you called it X’)?
“How does X relate to X-1, X-2, ..., to X+1, X+2, ..., andto Y?”
“How do you know that X is correct, and where do you show that?”
“Where does X come from, your contribution or literature™?

“Is X complete or are there any X+1, X+2"?

“Is X on right level of abstraction or do you mix X, sub-X, super-X"?

m So far, so good...

... the problem is that X, X', Y is element of {{word}, {sentence}, {bullet list},
{figure}, {table}, {paragraph}, {section}, {chapter}} in papers and thesis ® ©

So X can be text snippet — and concepts too

B HSR 48

. . HOCHSCHULE FUR TECHNIK
RAPPERSWIL © Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Some “Hot Buttons”...

® Quality over quantity
E.g. page quota: n pages or m words (opinions vary)
® Don’t structure thesis too deeply — 3 to 4 levels of headings at most

m Everything that applies for papers is still valid

Structure: Context/problem/solution/why a solution/why better than
everybody else’s

Intellectual Property Rights (IPR)/copyright ownership, research ethics

m Keep figures simple and consistent, and explain them in surrounding
text

Few colors/shadings, if any
Arrow semantics (solid line vs. dashed line)
Name the standard notation that you use, or provide a legend for IRPs

m Colons and parenthesis are good to tell reader what is coming

® Avoid any editorial sloppiness —typos, inconsistencies, gaps

O HSR

HOCHSCHULE FUR TECHNIK 49

B s © Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

... More “Hot Buttons”

m Purity and clarity over verbosity (in language)

No filler adjectives/adverbs (“works in principle”, “more or less”)

No exaggerations (“how high is highly positive™)?

But keep reader interested, indicate logical flow of text by keywords
Eloquence is appreciated (e.g. “application genre”)

B One message/one thought at a time (high cohesion/low coupling like in
software design)

One message per sentence
One aspect/topic per paragraph
Order matters (there is no unordered list/no set in technical writing)

m Avoid Wikipedia citations, or Web portals like IBM developerWorks

Apart from that, quality matters more than source (which is still relevant)

Journal, conference, workshop hierarchy; known names, seminal works
Try to be broad in terms of communities, age, etc.
Cite what supervisors cite; respect current style at your university/institute/group

O HSR

HOCHSCHULE FUR TECHNIK 50

. . RAPPERSWIL .
© Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

... Even More “Hot Buttons”

® Provide rationale to demonstrate maturity (“Durchdringungsgrad”)
Why this criterion and no other? Why this design?
If you claim something, does that mean everything else is wrong?
If you declare something to be out of scope, say why, and/or where done
(you/others)

® Show purpose and value of individual parts of your work

What does the reader do with the information you just provided?
How is it used later in the thesis?

How does it change the world (value), see e.g. DSM template
Provide the “big picture” — how do thesis parts work together?

®m Pick your vocabulary consciously

Shows that you are in command of the literature

As many terms as needed, but not more; simple, unambiguous names
Use consistently, avoid synonyms and homonyms

Avoid forward references if possible

B HSR 51

. . HOCHSCHULE FUR TECHNIK
RAPPERSWIL © Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

... Finally Some of ZIO’s Ones (Valid for any Publication)

m Tell your story five times:

TOC/structure, text highlights (definitions, bullet lists), examples, figures/tables, full
text — but in a consistent manner (semantic references)

B Let intermediate drafts sit for a while to refresh your perspective

Helps you to read from reader’s perspective (e.g., abstract, intro and summary only)
Read the TOC only — it must tell the full story (exec. summary, speed readers)

®m Order bullet lists and other enumerations consciously and consistently
E.g. by application time, by project phase, by importance, by dependency
Phrase all bullets or other elements in the same way (verb, noun, -ing form)

® Don’t underestimate the copy editing — tedious, but worth the effort

Be peculiar... any bug you find will not annoy your supervisor and other readers ©
Tackle in phases — figure captions only, indentation only, index only, etc.

O HSR

HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL

INSTITUTE FOR
SOFTWARE

© Olaf Zimmﬁmann, 2017.

FHO Fachhochschule Ostschweiz

Lessons Learned: Industry (Five Cs and Counting)

B Context matters

® Client wants and needs
to be distinguished

B Stakeholders concerns
to be elicited

B Common sense to be
applied

m Collaboration is
essential

(screen caption is hyperlink)

Projects

Development Tools
Cevelop
C++ Refactoring
Cute
Linticatar
Includator
Sconsolidator

Scala

Repara

= GISpunkt

Method Selection and Tailoring Guide

Method adoption and assembly with a sense of pragmatism

On our client projects, we typically combine carefully selected elements from
existing analysis and design methods, and complement them with a few additional
elements (if needed). Our most frequently used method elements are:

* User stories and use cases (sometimes combined), 0OAD domain models

* Non-functional requirements (NFRs) such as guality attributes captured in a

specific and measurable way, taking inspiration from SMART project and people
management goals (alternative: quality stories, quality attribute scenarios)

* Systemn context diagrams to analyze and determine external system boundaries
and project scope, sometimes blended with a dose of bounded contexts/context
maps from strategic Domain-Driven Design (DDD)

* Component-Responsibility-Collaborations (CRC) Cards, a variant of O0AD-style
CRC cards; radar charts; service interface contract tables

Architectural Knowledge

Management (AKM)
Architectural
Knowledge Hubs

Metl Selection and
Tailoring Guide

ADMentor Tool

Wanted: Your Insights,
Stories and Experience
Reports

Technical Writing and
Research Advice

Architectural Refactoring
for the Cloud (ARC)

Cloud Knowledge
Sources
Microservices
Resources and
Positions

Domain-Driven Design
Overview and Links

DevOps Resources and
Positions

Completed Projects

* Operational Modelling as envisioned in the Architecture Description Standard
(ADS) by IBM architects that also contributed to the IBM Global Services Method
(as one of several viewpoints)

* Y-statements for terse Architectural Decision (AD) capturing that still is compliant
to ISO/IEC/IEEE 42010:2011, the successor of IEEE Std. 1471 that makes
decision rationale a mandatory element of architecture descriptions

SWOT tables for (qualitative) fit-gap scoring of candidate assets (such as

patterns, technologies, frameworks)

This compilation of method templates and related practices yields an open and |ean
architecting framework (when applied properly). This architecting framework has
been proven in practice for many years, but yet has to be written up in its entirety
(in an open and lean way, of course). For the time being, an ECSA SAGRA 2016
workshop keynote presents seven selected framework elements. Stay tuned!

Some of the guiding principles of the framework are:

* Always write for a particular target audience (stakeholders with concerns) and
maodel purposeful.

* When deciding to inncluse or excluse an artifact, apply the less-is-more principle
("in doubt, leave it out").

* Follow a "good enough" approach to architectural decision making and
documentation. See this page for decision capturing templates.

* Design for operations, strive for compliance by desiagn

* Apply patterns and other reusable assets to reduce risk and cut cost.

For more guiding principles , see Gregor Hohpe's beliefs as presented in his ECSA

2014 kevnote (e.g. "content is king", "lead by example") and the 10 Design

Principles by GOV.UK Government Digital Service.

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 53

© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

https://www.ifs.hsr.ch/index.php?id=13195&L=4
https://www.ifs.hsr.ch/index.php?id=13195&L=4

Skills and Traits of Consultants

m Ability to listen

Active, multiple times, ...

m Ability to ask
Ask the right questions, and ask them right

m Ability to say no
In a constructive way — almost everything can be built if budget is there

m Ability to deal with incomplete and conflicting information

m Curiosity (domains, people, business models, ...)

m Get-the-job-done mentality (due date, bug fix, political turmoil)
m Ability to travel (schedule, location issues?)

m Humor, flexibility, helper attitude; other social skills

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 54

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

INSTITUTE FOR
SOFTWARE

IT Consultant Tenets and Code of Conduct (ZIO Top 5)*

m Marketing Opens Doors — Technical Excellence Creates Opportunities
Conferences, articles, academic degrees, continued education

® Responsiveness Expected by Client

“Blitz chess” metaphor: when the client has been active, you get active too

m Context Matters and Wants vs. Needs Differ
Kruchten’s Octopus dimensions: do not blindly transfer “best” practices
Articulated requirements do not always equal actual requirements

® End-to-End Systems Thinking Required
DevOps, maintenance team, education needs when new tech. is used

m Trustis Foundation for Long Term Success

Establish early and sustain it (needed for critical project situations)
Transfer knowledge (to client, to peers), do not hide it

* Inspired by Gregor Hohpe’s Beliefs (presented in his ECSA 2014 keynote)

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 55

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://ecsa2014.cs.univie.ac.at/files/ECSA2014-Keynote-Hohpe.pdf

Software Architecture and Software Engineering Resources

Projects

Software

ABOUT BACK ISSUES WRITE FOR US BSCRIBE SE-RADIO Lo JOIN

CURRENT ISSUE: THE ROLE OF THE SOFTWARE ARCHITECT

NOVEMBER/DECEMBER 2016

Architectural Refactoring
for the Cloud (ARC)

(screen captions is hyperlink)

Cloud Knowledge
Sources

The Software
Architect’s Role
in the Digital Age

Gregor Hohpe, Allianz SE

Microservices
Resources and
Positions

Domain-Driven Design
Owverview and Links

Ipek Ozkaya, Carnegie Mellon Seftware Engineering Institute

DevOps Resources and

Uwe Zdun, University of Vienna

Pasitions

Olaf Zimmermann, U
Switzerland, Rappers

¥ of Applied Sciences of Eastern

Architectural Knowledge Hubs
Online Resources for Software Architects

The November/December 2016 Theme Issue of IEEE Software on the RBole of the
Software Architect in the Diigtal Age is a good starting point (Guest Editor's

Introduction to Theme Issue as PDF).

Websites by thought leaders that we frequently consult (amaong many others) are:
. Martin Fowler's Eliki

. Gregor Hohpe's Ramblings

. Philippe Kruchten's Weblog

. Ecin Wood's website and blog at Artechra

. Michael Stal's software architecture blog

. The Software Architecture Handbook website by Grady Booch

. Perzonal page of Gernot Starke (mostly in German) - arc42, aim42, IT

o s WK

architect profession

fus]

. Technical Reports and other publications in the Diaital Library of the Software
Institute (SEI

9. The Open Group website - IT Architect Certification, TOGAF, ArchiMate, XA
10. Object Management Group (OMG) - UML, SPEM, MDA, CORBA, ADM, KDM

11. [EEE Software, as well as SWEEBCK and the very readable standard for
architecture descriptions, ISO/IEC/IEEE 42010

Academic conferences (software architecture research): WICSA, QoSA, ECSA

Engineerin

12.

and online archives: ACM Digital Library, IEEE Xplore and ScienceDirect.

The following conferences have a practitioner focus on all things software
architecture are (most of the presentations are available online and can be
accessed from the conference websites):

1. SEI SATURN, e.g. SATURN 2013

2. Industry Day at CompArch/WICSA 2011

3. ECSA 2014 also had an Industry Day

4. 00OF (most talks in German, presentations not available online by default)

5. SPLASH and OOPSLA (e.g. practitioners reports program at OOPSLA 2008)

If you are new to the field, you can get started by reviewing the arc4?2 site (in

German) or look for architectural guidance and practices in OpenUE. If you have a
little more time to study, many excellent books on the topic are available to you,
including (but of cour=ze not limited to):
1. Software Svstems Architecture {Second Edition) by Nick Rozanski and Eoin
Woods introduces core architecture concepts, as well as a viewpoint- and
perspective-based architecture framework.

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 56
© Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.computer.org/csdl/mags/so/2016/06/index.html
https://www.computer.org/csdl/mags/so/2016/06/index.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214

SERVICE DESIGN
AS A SET OF RECURRING
ARCHITECTURAL DECISIONS:
PARADIGMS, PRINCIPLES, PATTERNS

Service Design and Service Granularity —
BACKGROUND INFORMATION

May 2017
Prof. Dr. Olaf Zimmermann (ZIO)
Certified Distinguished (Chief/Lead) IT Architect

Institute fur Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Characteristics from L/F Definition Analyzed and Compared

Viewpoint/Qualities/Benefit SOA Pendant

Componentization via Logical Viewpoint (VP): separation of Service provider, consumetr,

services concerns improves modifiability contract (same concept)

Organized around business Scenario VP: OOAD domain model and Part of SOA definition in books

capabilities DDD ubiquitous language make code and articles since 200x (e.g.
understandable and easy to maintain Lublinsky/Rosen)

Products not projects n/a (not technical but process-related) (enterprise SOA programs)

Smart endpoints and dumb Process Viewpoint (VP): information Same best practice design rule

pipes hiding improves scalability and exists for SOA/ESB (see e.g.
modifiability here)

Decentralized governance n/a (not technical but process-related) SOA governance (might be

more centralized, but does not
have to; “it depends”)

Infrastructure automation Development/Physical VP: speed No direct pendant (not style-
specific, recent advances)

Design for failure All VPs: robustness Key concern for distributed
systems, SOA or other

Evolutionary design n/a (not technical but process-related): Service design methods,

improves replaceability, upgradeability Backward compatible contracts
™ HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 58 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

http://www-935.ibm.com/services/us/cio/pdf/wp_five-best-practices-for-deploying-successful-soa.pdf

SOA Principles and Patterns vs. Microservices Tenets

Aspect/Capability SOA Principles and Patterns Microservices Tenets and Patterns

Core metaphor (Web) Service, Service Contract Fine-grained interfaces, RESTful resources

Method OOAD/UP; SOMA and others Domain-Driven Design, agile Practices

Architectural principles Layering, loose coupling, flow IDEAL Cloud Architectural Principles
independence, modularity

Data storage Information Services (RDB, File) Polyglot Persistence (NoSQL, NewSQL)

Deployment and hosting Virtual machines, JEE, SCA,; Lightweight Containers (e.g., Docker,
Application Hosting/Outsourcing Dropwizard); Cloud Computing

Build tool chain n/a (proprietary vendor Decentralized Continuous Delivery

_ approaches, custom developed _

Operations (FCAPS) in-house assets, ITIL and other Lean but Comprehensive System
management frameworks) Management (a.k.a. DevOps)

Message routing, Enterprise Service Bus (ESB) API Gateway, lightweight messaging

transformation, adaption systems (e.g., RabbitMQ)

Service composition Service Composition DSLs, POPL Plain Old Programming Language (POPL)

Lookup Service Registry Service Discovery

Reference: O. Zimmermann, Microservices Tenets — Agile Approach to Service Development and Deployment,
Proc. Of SummerSoC 2016, Springer Computer Science — Research and Development, 2016.

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 59
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://rdcu.be/mJPz

Microservices — Literature and Resources

m “Building Microservices”, S. Newman (O’Reilly 2016)
Sample chapters available online (free of charge)

. . Monolithic architecture
m “Microservices” (auf deutsch), E. Wolf, dpunkt 2016 uicroservices architecture

APl gateway

http://dpunkt.de/a2016_downl/Microservices.pdf Client-side discovery
Server-side discovery
® InfoQ Microservices zone Service registry
. . . Self registration
http://www.infog.com/microservices 3rd party registration

Multiple service instances per host
Single service instance per host
Service instance per VIV

® Microservices pattern languages (emerging): service instance per Container

] ; ; ; ; Database per Service
http://microservices.io/patterns/microservices.html " P e

http://blog.arunqupta.me/microservice-design-patterns/

http://samnewman.io/patterns/

m SEI SATURN 2015 workshop
https://github.com/michaelkeeling/SATURNZ2015-Microservices-Workshop

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 60
FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

INSTITUTE FOR
SOFTWARE

http://dpunkt.de/a2015_downl/Microservices.pdf
http://www.infoq.com/microservices
http://microservices.io/patterns/microservices.html
http://blog.arungupta.me/microservice-design-patterns/
http://samnewman.io/patterns/
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

