
DIMENSIONS OF SUCCESSFUL 

WEB API DESIGN AND EVOLUTION: 

CONTEXT, CONTRACTS, 

COMPONENTS

Prof. Dr. Olaf Zimmermann (ZIO)

Distinguished (Chief/Lead) IT Architect

Institute for Software, HSR FHO OST 

ozimmerm@hsr.ch

Blog: https://ozimmer.ch/blog

20th International Conference on Web Engineering (ICWE) 

Online, June 11, 2020



Happy Birthday ICWE (and HTTP 1.0 turns 25!)

 At the time of the first conference edition:

 WWW 1.0: "e-business" CGI, servlets etc. 

 Amazon was an online book store  

 Shop software was a market, some POX APIs 

 Until 2010:

 Web 2.0: Wikis, blogs, mashups (what happened to them?)

 Twitter had started, Amazon now selling many things    

 Cloud? Not sure yet. Web APIs? Sure! RESTful? A few (if any). 

 Since 2010: 

 Cloud and containers all over the place; AWS leading the cloud market

 Many social networks, games; public APIs a must, hypermedia in the media

 This year's conference themes:

 Performance, Testing, Machine Learning, Open Data, Sentiment Analysis, 

Emotion Detection, Location-Awareness, and more 

© Olaf Zimmermann, 2020.

Page 2

https://www.visualcapitalist.com/30-year-timeline-world-wide-web/

https://www.visualcapitalist.com/30-year-timeline-world-wide-web/


A SOA 1.0: Order Management (Telecommunications Domain)

© Olaf Zimmermann, 2020.

Page 3

Reference: IBM, 

ECOWS 2007



Agenda (and Take Away Messages) 

1. Context matters

 One size does not fit all 

 Strategic and tactic Domain-Driven Design (DDD) to the remedy

 Context Mapper DDD DSL and supporting tools available

2. Contracts rule

 A unified interfaces is great for browsers, but not enough for application 

integration 

 Protocol choice depends (on context, on requirements)

 Microservice Domain-Specific Language (MDSL) and tools released 

3. Components contain (cost and risk)

 Web API designs do not have to be reinvented on every project

 Much focus on infrastructure design so far, what about API endpoints, 

service contracts, message representation elements?

 Microservice API Patterns (MAP) structure the solution space

© Olaf Zimmermann, 2020.

Page 4



Part 1: Context

Page 5

© Olaf Zimmermann, 2020.



Debunking Myths 1: Technology First, One Size Fits All

Page 6

© Olaf Zimmermann, 2020.

Context

Digitalization: Development of open source software or commercial project.   

Myths

a) Information Technology (IT) must be at the heart of innovation; 

users can be educated about their wants and needs later. 

b) A single software design can serve all user contexts and requirements. 

Rectification

Observe/listen to users to carve out the "business" value of the new software. 

Establish an ubiquitous, application domain-driven language. 

Apply proven engineering methods and empirical validation techniques. 

No cargo cults either please… context matters!

https://en.wikipedia.org/wiki/Cargo_cult


What is Context? It depends.

 Latin roots: contexere: "weave together", contextus: "tight coupling" (!)

 "A frame that surrounds […] event and provides

resources for its appropriate interpretation"

 Dimensions in Software and Web Engineering:

 Location (for instance, of a mobile phone or robot) 

 P. Kruchten's project octopus and decision making

context (incl. ethics, compliance)

 Trigger and precondition for patterns usage

 User experience ("operating range")

 Developer experience (papers by G. Murphy et al.)

 System context in systems of systems (interfaces)

 Modeling context

 Conway's Law vs. The Matrix": universal data model

© Olaf Zimmermann, 2020.

Page 7

PL: Published Language D: Downstream, U: Upstream ACL: Anti-Corruption Layer

https://philippe.kruchten.com/2011/02/10/the-frog-and-the-octopus-go-to-snowbird/
https://blogs.ubc.ca/gailcmurphy/publications/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7217770
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer


Methods and Practices – Old

Page 8

© Olaf Zimmermann, 2020.

Agile practices

Professional services methods: architecture-centric

Domain model, code, tests, etc. 

and New (?)

https://files.ifi.uzh.ch/rerg/amadeus/teaching/courses/it_architekturen_hs08/5_Developing_a_solution_architecture.pdf


Example of an Agile Practice: User Stories 

Page 9

© Olaf Zimmermann, 2020.

Business Analyst

As a business analyst (specializing on a particular business or technical domain),

I would like to describe the problem domain and its subdomains in a natural, yet precise 

and ubiquitous language (i.e., domain concepts, their properties and relations) 

so that project sponsor, team and other stakeholders can develop and share a common 

understanding about these concepts and their intricacies in the given domain – in line 

with Agile values and principles.

https://www.agilealliance.org/glossary/user-story-template/

https://www.agilealliance.org/glossary/user-story-template/


 Towards an "open and lean architecting framework" (ECSA SAGRA 16):

 Agile practices such as user stories and definition of done (done-deciding)

 SMART nonfunctional requirements a.k.a. desired qualities:  

 Specific, Measurable, Agreed upon, Realistic, Time bound 

 CRC cards to specify components and their collaborations

 Y-statements to capture architectural decisions and their rationale:

Key Tools in my ITA Toolbox: Lean/Light Templates, Checklists 

© Olaf Zimmermann, 2020.

Page 10

https://ozimmer.ch/practices/2020/05/22/ADDefinitionOfDone.html
http://www.projectsmart.co.uk/smart-goals.php
http://stal.blogspot.com/2006/12/architects-toolset-crc-cards.html
https://medium.com/@docsoc/y-statements-10eb07b5a177
https://www.linkedin.com/posts/ozimmer_softwarearchitecture-architecturehaikus-activity-6669898998922457088-nwVM


Domain-Driven Design (DDD): Domain Model in the Center

 Strategic: Bounded Contexts

 Model boundaries and their 

relations (Web APIs)

 Abstraction of team or (sub-) 

system

 E.g. payment, product catalog, 

shipping

 Tactic DDD: Aggregates

 Object clusters as storage 

units, consistency invariants

 E.g. order and its items

 Event storming to find the 

domain model elements

 Huge momentum right now

 Similar techniques have been 

around since 1990s

© Olaf Zimmermann, 2020.

Page 11

Figure reference: https://leanpub.com/theanatomyofdomain-drivendesign

https://leanpub.com/theanatomyofdomain-drivendesign


A DSL and Tools for DDD: Context Mapper

 Eclipse plugin (v5.12) , VSC Extension (new!) or Web IDE/GitPod (new!) 

© Olaf Zimmermann, 2020.

Page 12

Tactic DDD 

(of Reference 

Management 

Service):

Stereotyped

OOAD classes

Strategic DDD: Each bounded context has its 

own domain model (aggregates etc.)

Relations: PL: Published Language,

CF: Conformist (and more)

https://marketplace.eclipse.org/content/context-mapper
https://marketplace.visualstudio.com/items?itemName=contextmapper.context-mapper-vscode-extension


Rapid OOAD/DDD with Context Mapper (and MDSL)

© Olaf Zimmermann, 2020.

Page 13

User 
Story

• in Context Mapper (manual)

• Use cases also possible

Analysis 
Model

• Subdomains, Entities

Design 
Model

• Feature BCs with Aggregates

• System BCs

• JHipster JDL

Service 
Contract

• MDSL

• Open API

Clients, 
Servers

• JHipster

• Spring 
Boot

generate

(fully)

generate

(stubs)

generate

(initially)

generate

(initially)

Step-by-step instructions: https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

https://contextmapper.org/docs/home/
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html


Part 2: Contracts (in Context of Principles, Styles, Protocols) 

Page 14

© Olaf Zimmermann, 2020.



Debunking Myths 2: HTTP and Microservices Confirmation Biases

Page 15

© Olaf Zimmermann, 2020.

Context

Web API Design and Evolution. Container as a Service, Serverless. Services.   

Myths

a) SOA and microservices are competing styles. Micro means really small.

b) Any (micro-)service must expose an HTTP resource API.

c) The REST principle of a unified interface (GET, POST, PUT, etc.) is suited 

and sufficient to express rich domain model semantics.  

Rectification: Contracts rule (polyglot integration, data type precision)!

a) Microservices are an implementation approach to SOA. Service size varies.

b) IDEAL, FROSTT, CCP Two-Tier; event sourcing and streaming, Kafka
c) DDD, MDSL, operationId in Open API Specification (OAS)



"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

Page 16

© Olaf Zimmermann, 2020.

Our focus:

Microservices!

Middleware less popular, 

often custom build (term 

also used in deployment 

and clustering context)

Optional (then 

and now)

(data) contracts



A Consolidated Definition of Microservices

 Microservices architectures evolved from previous incarnations of 

Service-Oriented Architectures (SOAs) to promote agility and elasticity  

 Independently deployable, scalable and changeable services, 

each having a single responsibility 

 Modeling business capabilities 

 Often deployed in lightweight containers 

 Encapsulating their own state, and communicating via message-based 

remote APIs (HTTP, queueing), IDEALly in a loosely coupled fashion

 Facilitating polyglot programming and persistence

 Leveraging DevOps practices including decentralized continuous delivery 

and end-to-end monitoring (for business agility and domain observability)

© Olaf Zimmermann, 2020.

Page 17

Detailed analysis: Zimmermann, O., Microservices 

Tenets: Agile Approach to Service Development 

and Deployment, Springer Journal of Computer 

Science Research and Development (2017)

https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ZIO-CHOpenDay-CCaSAWAv10p.pdf
http://rdcu.be/mJPz


Cloud-native Application Architectures are API-centric

Page 18

© Olaf Zimmermann, 2020.

http://www.cloudcomputingpatterns.org

API

API API

IDEAL: Isolated State, Distribution/Decomposition, Elasticity, Automation, Loose Coupling

http://www.cloudcomputingpatterns.org/


You can view the Web as an asynchronous connector technology

 Resource takes place of queue in this view:

© Olaf Zimmermann, 2020.

Page 19

https://ieeexplore.ieee.org/docum

ent/8239944?arnumber=8239944

https://ieeexplore.ieee.org/document/8239944?arnumber=8239944


From Biz and Dev to Ops: Bad Smells and Refactorings

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural 

Smells and Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553  

and Springer SICS (2019) (online, report PDF, short presentation)

© Olaf Zimmermann, 2020.

Page 20

In scope of DDD and this talk/my research

https://rdcu.be/bQfr6
https://arxiv.org/pdf/1906.01553
https://www.summersoc.eu/wp-content/uploads/2019/06/4.10-Davide-Neri-Design-Principles-Architectural-Smells-Refactorings-For-Microservices.pdf


OpenAPI Specification (OAS): An Interface Definition Language (IDL)

 Wikipedia lists 23+ IDLs

 OAS is one of them

 Bound to HTTP (AsyncAPI?)

© Olaf Zimmermann, 2020.

Page 21

https://en.wikipedia.org/wiki/Interface_description_language


Contracts in Microservice Domain-Specific Language (MDSL)

Page 22

How does this notation compare 

to OpenAPI/JSON Schema 

(and other IDLs, WSDL/XSD)? 

© Olaf Zimmermann, 2020.

 Data contract

 Compact, technology-neutral

 Inspired by JSON, regex

 Endpoints and operations

 Elaborate, terminology from 

MAP domain model 

 Abstraction of REST resource

 Abstraction of WS-* concepts

 API client, provider, gateway; 

governance (SLA, version, …)

"id": Role<type> triplet: Role=(Meta-)Data, Link, ID

INFORMATION_HOLDER is a MAP decorator (role stereotype)

https://microservice-api-patterns.github.io/MDSL-Specification/datacontract
https://microservice-api-patterns.org/patterns/index


MDSL and OAS in Comparison

Criterion MDSL OAS (f.k.a. Swagger)

Concrete syntax DSL (made with Xtext) YAML, JSON

Abstract syntax SOA concepts, MAP domain model HTTP concepts

Main use cases Agile modeling, SOAD, contract first Code first, testing, stub 

generation 

Bindings HTTP, Java; more possible and 

planned (gRPC, GSL, MOM/EIP)

HTTP only (sibling 

language AsyncAPI)

Size of specification 19 pages (v3.3.2; note: less complete!) 95 pages (v3.0.3)

Size of "Publication 

Management" Demo 

contract (blog post)

1,568 bytes, 132 words (1,321

characters)

3,263 bytes, 199 words

(2,159 characters)

Tools Few (editor, OAS generator), see here Many, see here

Maturity since 2018; just open sourced (ZIO) since 2011 (SmartBear)

License Apache License 2.0 Apache License 2.0

© Olaf Zimmermann, 2020.

Page 23

https://github.com/Microservice-API-Patterns/MDSL-Specification/releases
http://spec.openapis.org/oas/v3.0.3
https://microservice-api-patterns.github.io/MDSL-Specification
https://openapi.tools/


News on MDSL – v3 Grammar and Tools Open Sourced 

 Editor, API linter, OpenAPI generator; tutorial available on GitHub

© Olaf Zimmermann, 2020.

Page 24

https://github.com/Microservice-API-Patterns/MDSL-Specification


Part 3: Components (and Patterns)

Page 25

© Olaf Zimmermann, 2020.



Debunking Myths 3: Not-Invented-Here Syndrome

Page 26

© Olaf Zimmermann, 2020.

Context

Web/cloud application development (any project, actually).   

Myth

Our performance scalability requirements are more advanced than everybody 

else's (ok, except for those of the Internet giants). There is no point in reusing 

existing solutions; we have to invent our own library, framework, protocol, etc. 

Rectification

Back to context and requirements (DDD!): Identify candidate services and make 

a conscious and candid buy-rent-build decision per service. 

If "build" is required, apply patterns when doing so.   

Components (captured as patterns, in frameworks) contain (cost and risk)!



Decomposition Heuristics

 Two-pizza rule (team size)

 Lines of code (in service implementation)

 Size of service implementation in IDE editor

 Simple if-then-else rules of thumb

 E.g. “If your application needs coarse-grained services, implement a SOA; 

if you require fine ones, go the microservices way” (I did not make this up!)

 Non-technical traits, including “products not projects”

Context matters here too – one size does not fit all, 

(also pointed out in a keynote at Agile Australia)

© Olaf Zimmermann, 2020.

Page 27

What is wrong with these “metrics” and “best practice” 

recommendations?

that do not suffice 

Microservices tenets

https://martinfowler.com/articles/agile-aus-2018.html


DDD  to the Remedy in (Micro-)Service Design

 M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

 Applies and extends DDD books by E. Evans and V. Vernon

© Olaf Zimmermann, 2020.

Page 28

Reference: JUGS presentation, Bern/CH, Jan 9, 2020

https://speakerdeck.com/mploed
https://vaughnvernon.co/
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2


Service Operations

Page 29

© Olaf Zimmermann, 2020.

https://www.enterpriseintegrationpatterns.com/

patterns/messaging/CommandMessage.html

Sample request 

message

(note: PUTs and POSTs 

would look different)

Response 

message 

structure 

{[…]}

{[…]}

and Message Types (from Integration Domain)

{[…]} -- some JSON  (or other MIME type)

+/-?

Embed nested

entity data? 

or

Link to separate 

resource?

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html


Microservices API Patterns (MAP): Overview

Page 30

© Olaf Zimmermann, 2020.

http://microservice-api-patterns.org

EuroPLoP 2019

EuroPLoP 2017

EuroPLoP 2018

(not yet) EuroPLoP 2020

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/publications#interface-evolution-patterns--balancing-compatibility-and-extensibility-across-service-life-cycles
https://microservice-api-patterns.org/publications#interface-representation-patterns--crafting-and-consuming-message-based-remote-apis
https://microservice-api-patterns.org/publications#interface-quality-patterns--communicating-and-improving-the-quality-of-microservices-apis


Embedded Entity Pattern

Page 31

© Olaf Zimmermann, 2020.

Problem: How can you avoid 

exchanging multiple messages when 

receivers require insights from multiple 

related information elements?

Solution: For any relationship that the client has to follow, embed a 

Data Element in the message that contains the data of the target entity 

(instead of linking to the target entity).

Forces: Performance, 

scalability; flexibility and 

modifiability; data quality, 

freshness, consistency. 

online version of pattern

https://microservice-api-patterns.org/patterns/structure/elementStereotypes/DataElement
https://microservice-api-patterns.org/patterns/quality/referenceManagement/EmbeddedEntity


Linked Information Holder Pattern

Page 32

© Olaf Zimmermann, 2020.

Problem: When exposing structured, possibly 

deeply nested information elements in an API, 

how can you avoid sending large messages 

containing lots of data that is not always useful 

for the message receiver in its entirety?   

Forces: Same as for 

Embedded Entity.

Solution: Add a Link Element to the message that references an API endpoint. 

Let this API endpoint represent the linked entity; for instance, use an Information 

Holder Resource for the referenced information element.

online version of pattern

https://microservice-api-patterns.org/patterns/structure/elementStereotypes/LinkElement
https://microservice-api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource
https://microservice-api-patterns.org/patterns/quality/referenceManagement/LinkedInformationHolder


Key Messages of this Talk

 It is the API contracts (and their implementations) that make or break 

projects – not (or not only) middleware and network protocols

 Frameworks and infrastructures come and go, APIs stay

 Rich domain semantics call for higher-level design tools  

 Microservice API Patterns (MAP) language: website first

 Focus on message representation elements

 20+ patterns, sample implementation in public repo, supporting tools

 Microservices Domain-Specific Language (MDSL) open sourced

 Uses MAPs in service contracts (as decorators)

 Can be generated from DDD bounded contexts

 Context Mapper supports strategic Domain-Driven Driven Design (DDD), 

rapid OOAD/tactic DDD and architectural refactoring

 Other tools emerging: context discovery, application layer design

© Olaf Zimmermann, 2020.

Page 33

https://microservice-api-patterns.org/
https://microservice-api-patterns.github.io/MDSL-Specification
https://contextmapper.org/


Teaser Question

 You had been tasked to develop a RESTful HTTP API for a master data 

management system that stores customer records and allows sales staff to 

analyze customer behavior. The system is implemented in Java and Spring. 

A backend B2B channel uses message queues (RabbitMQ). 

 What do you do (now)? 

a) I hand over to my software engineers and students because all I manage to 

do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as defined in 

Spring MVC or JAX-RS etc. and let libraries and frameworks finish the job. 

c) I install an API gateway product in Kubernetes and hire a sys admin, done. 

d) I design a service layer (Remote Facade with Data Transfer Objects) and 

publish an Open API Specification (f.k.a. Swagger) contract. I worry about 

message sizes, transaction boundaries, error handling and coupling criteria 

while implementing the contract. To resolve such issues, I create my own 

novel solutions. Writing infrastructure code and test cases is fun after all!

e) I leverage Context Mapper, MDSL, MAP for API design and evolution 

© Olaf Zimmermann, 2020.

Page 34



Selected Publications

 Zimmermann, O.: Microservices Tenets – Agile Approach to Service Development and Deployment

 Springer Comp Sci Res Dev, 2017, http://rdcu.be/mJPz

 Pautasso, C.; Zimmermann, O.; Amundsen, M.; Lewis, J.; Josuttis, N.: Microservices in Practice, Part 1: 

Reality Check and Service Design. In: IEEE Software, Volume 34, Issue 1, 2017, pp. 91-98.

 Pautasso, C.; Zimmermann, O.; Amundsen, M.; Lewis, J.; Josuttis, N.: Microservices in Practice, Part 2: 

Service Integration and Sustainability. In: IEEE Software, Issue 2, 2017, pp. 97-104.

 Pautasso, C.; Zimmermann, O.: The Web as a Software Connector: Integration Resting on Linked 

Resources. In: IEEE Software, 35 (1) 2018, pp. 93-98. (PDF)

 Pardon, G., Pautasso, C., Zimmermann, O.: Consistent Disaster Recovery for Microservices: the 

Backup, Availability, Consistency (BAC) Theorem

 In: IEEE Cloud Computing, 5(1) 2018, pp. 49-59. 

 Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural Principles for Cloud Software

 In: ACM Trans. on Internet Technology (TOIT), 18 (2) 2018, pp. 17:1-17:23. 

 Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating Enterprise Legacy Source Code 

to Microservices: On Multitenancy, Statefulness, and Data Consistency

 In: IEEE Software, 35 (3) 2018, pp. 63-72.

 Hohpe, G.; Ozkaya, I.; Zdun, U.; Zimmermann, O.: The Software Architect’s Role in the Digital Age. 

Guest Editors’ Introduction. In: IEEE Software, Volume 33, Issue 6, 2016, pp. 30-39. (PDF)

© Olaf Zimmermann, 2020.

Page 35

(click on screen caption to get them)

https://link.springer.com/article/10.1007/s00450-016-0337-0
http://rdcu.be/mJPz
https://ieeexplore.ieee.org/document/7819415
https://ieeexplore.ieee.org/document/7888407
http://www.pautasso.info/biblio/2018/ieeesw
http://www.pautasso.info/biblio-pdf/IEEESW-2018-WWW-Insights.pdf
http://design.inf.usi.ch/publications/2018/bac-theorem
https://www.researchgate.net/publication/317348634_Architectural_Principles_for_Cloud_Software
https://ieeexplore.ieee.org/abstract/document/8186442/
https://ieeexplore.ieee.org/document/7725214
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214
https://ozimmer.ch/papers/


My New Blog: "The Concerned Architect"

Page 36

© Olaf Zimmermann, 2020.

https://ozimmer.ch/blog/

Slides, demo instructions: https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

https://www.linkedin.com/posts/ozimmer_softwarearchitecture-architecturehaikus-activity-6669898998922457088-nwVM
https://ozimmer.ch/blog/
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html


DIMENSIONS OF SUCCESSFUL WEB 

API DESIGN AND EVOLUTION: 

CONTEXT, CONTRACTS, 

COMPONENTS

BACKUP CHARTS

Prof. Dr. Olaf Zimmermann (ZIO)

Distinguished (Chief/Lead) IT Architect

Institute for Software, HSR FHO OST 

ozimmerm@hsr.ch

Blog: https://ozimmer.ch/blog

20th International Conference on Web Engineering (ICWE) 

Online, June 11, 2020



 Many design issues, typically recurring

 per system/team

Policies reference 
customer data

Data and control flow direction? 

Data formats (norms, transformations)? 

Frequency of message exchange? 

“Fictitious” Insurance Application/Integration Landscape 

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 38

Design issue 

(decision required)

Data duplication and/or

on-demand exchange? 

Strict/eventual consistency?

Realization/ and procurement

(sourcing, staffing):

Buy? Build? Rent? 

Technology? Vendor? Team? 

Subdomain,
System, Team

, per relationship, per interface

Client influence on API design and 

stability/evolution (governance)?

API contracts and technologies?

System 

decomposition?



A Strategic DDD Context Map with Relationships

 Insurance scenario, example model from https://contextmapper.org/

Page 39

© Stefan Kapferer, Olaf Zimmermann, 2020.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Bounded 
Context

https://contextmapper.org/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97


Context Mapper: DSL implements Meta-Model and Semantics

 A Domain-Specific Language (DSL) for DDD:

 Formal, machine-readable DDD Context Maps via editors and validators

 Model/code generators to convert models into other representations

 Model transformations for refactorings (e.g., “Split Bounded Context”)

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 40

Plugin update site: https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/


Context Mapper: Domain-Specific Language

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 41

ContextMap DDDSampleMap {

contains CargoBookingContext

contains VoyagePlanningContext

contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext

[U,OHS,PL] LocationContext -> [D] CargoBookingContext

VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

}

DDD relationship patterns 

(role of endpoint)

Influence/data flow direction: ->, <->

(upstream-downstream or symmetric)

Bounded Contexts 

(systems or teams) 

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97


Tool Big Picture

 Context Mapper 

architecture

 Modelled with Context 

Mapper DSL

 UML generated

© Olaf Zimmermann, 2020.

Page 42



Microservice API Patterns (MAP) Categories

 Identification Patterns:

 DDD as one practice to 

find candidate endpoints 

and operations

 Evolution Patterns: 

 Recently workshopped 

(EuroPLoP 2019) 

© Olaf Zimmermann, 2020.

Page 43

http://microservice-api-patterns.org

http://microservice-api-patterns.org/


MAP Example: Pagination (1/2)

 Context 

 An API endpoint and its calls have been identified and specified.

 Problem

 How can an API provider optimize a response to an API client that should 

deliver large amounts of data with the same structure? 

 Forces 

 Data set size and data access profile (user needs), especially number of 

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often 

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 44

© Olaf Zimmermann, 2020.



MAP Example: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer 

how additional results can be obtained/retrieved incrementally. 

 Process some or all partial responses on the consumer side iteratively as 

needed; agree on a request correlation and intermediate/partial results 

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences 

 E.g. state management required

 Know Uses

 Public APIs of social networks

Page 45

© Olaf Zimmermann, 2020.



Mini-Exercise: Can MAP serve as a map/guide to API design?

 Let’s have a look at the language organization and selected patterns…

 http://microservice-api-patterns.org

 Website public since 2/2019; experimental preview site available to beta testers

 Sample patterns (suggestions):

 Request Bundle, Embedded Entity, Wish List, API Key, Two in Production 

 Questions:

 Do you agree with our hypothesis: knowledge on API design is beneficial?

 Do names and icons work for you/make sense/communicate the essence? 

 Would you have expected different patterns? 

 How about template and category structure?

 E.g. quality category

 E.g. implementation hints (not on website, but in EuroPLoP papers)

 Which coupling criteria matter for (micro-)service decomposition?

© Olaf Zimmermann, 2020.

Page 46

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/

