
DOMAIN-DRIVEN SERVICE

IDENTIFICATION:

FROM BOUNDED CONTEXTS

TO WEB APIS OF QUALITY AND

STYLE

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

Microservices Roundtable

Zürich, 26. Februar, 2018

Agenda

 Context (recap)

 SOA principles and microservices tenets

 Selected Domain-Driven Design DDD patterns

 Strategic DDD

 Tactic DDD

 Web API Design and Evolution (WADE) project

 EuroPLOP 2017: Interface Representation Patterns (IRP), incl. Pagination

 Service Responsibilities and Granularity (Business/Technical)

 Quality (of Service), Evolution

 Microservices API Patterns (MAP)

 From DDD to WADE/IRP (and the REST of SOA)

 Mappings

 Practice identification

© Olaf Zimmermann, 2018.

Page 2

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

Page 3

© Olaf Zimmermann, 2018.

No single definition – “SOA is different things to different people”

 A set of services that a business wants to expose to their

customers and partners, or other portions of the organization.

 An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server).

• “A service is a component with a remote interface.” (M. Fowler)

 A set of architectural patterns such as enterprise service bus,

service composition, and service registry, promoting principles

such as modularity, layering, and loose coupling to achieve design

goals such as separation of concerns, reuse, and flexibility.

• Services have to be discovered

• Service invocations have to be routed, transformed, adapted

• Smaller services have to be stitched together to implement user needs

 A programming and deployment model realized by standards,

tools and technologies such as Web services.

Business

Domain

Analyst

IT

Architect

Developer,

Administrator

Adapted from IBM SOA Solution Stack (S3) reference architecture and SOMA method, https://www-01.ibm.com/software/solutions/soa/

https://www-01.ibm.com/software/solutions/soa/

Microservices – An Early and Popular Definition (2014)

 J. Lewis and M. Fowler (L/F): “[…] an approach to developing a single

application as a suite of small services, each running in its own process

and communicating with lightweight mechanisms, often an HTTP

resource API. These services are built around business capabilities and

independently deployable by fully automated deployment machinery.

There is a bare minimum of centralized management of these services,

which may be written in different programming languages and use

different data storage technologies.”

 IEEE Software Interview with J. Lewis, M. Amundsen, N. Josuttis:

Page 4

© Olaf Zimmermann, 2018.

Reference: http://martinfowler.com/articles/microservices.html

(screen captions

are hyperlinks)

http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://martinfowler.com/articles/microservices.html
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

Seven Tenets for Microservices Approach to SOA (2016/2017)

1. Fine-grained interfaces to single-responsibility units that encapsulate data and

processing logic are exposed remotely to make them independently scalable,

typically via RESTful HTTP resources or asynchronous message queues.

2. Business-driven development practices and pattern languages such as Domain-

Driven Design (DDD) are employed to identify and conceptualize services.

3. Cloud-native application design principles are followed, e.g., as summarized in

Isolated State, Distribution, Elasticity, Automated Management and Loose

Coupling (IDEAL).

4. Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot

persistence strategy; each service implementation has its own data store.

5. Lightweight containers are used to deploy and scale services.

6. Decentralized continuous delivery is practiced during service development.

7. Lean, but holistic and largely automated approaches to configuration and fault

management are employed within an overarching DevOps approach.

© Olaf Zimmermann, 2018.

Page 5

Reference: O. Zimmermann, Microservices Tenets – Agile Approach to Service Development and Deployment,

Proc. Of SummerSoC 2016, Springer Computer Science – Research and Development, 2016 (CSR&D Paper).

http://rdcu.be/mJPz

Patterns for Tactic DDD: Meta Model (Source: ZIO)

 Entity = “True OO”

 Has id

 Has state

 Has behavior

 Root Entity

 Visible outside of

Aggregate (by id)

 Value Object

 No behavior

 Aggregate

 Groups entities

 Validates invariants

(e.g., cross-entity

business rules)

Page 6

© Olaf Zimmermann, 2018.

Strategic DDD Patterns: Meta Model (Source: ZIO)

 Partitioning:

 Subdomain: top down

 Bounded Context:

bottom up

 Context relationships

 Published Language

(exposed by OHS etc.)

 Local vs. remote?

 Visibility?

 (A)symmetry?

 Amount of control and

influence for client?

 ACL as an option

 Follow-on decisions

 Technology, style

Page 7

© Olaf Zimmermann, 2018.

SOA Principle and IDEAL Application Property: Loose Coupling

 Practitioner heuristics (a.k.a. coupling criteria) in books, articles, blogs:

 SOA in Practice book by N. Josuttis, O’Reilly 2007

 11 types of (loose) coupling; emphasis on versioning and compatibility

 IBM Redbook SG24-6346-00 on SOA and ESB (M. Keen et al.), IBM 2004

 Coupled vs. decoupled continuum: semantic interface, (business) data model,

QoS (e.g. transactional context, reliability), security

 DZone, IBM developerWorks articles, InfoQ, MSDN, …

 Academic contributions (research results):

 General software engineering/architecture literature since 1960s/1970s

 Starting from D. Parnas (modularization, high cohesion/low coupling)

 WWW 2009 presentation and paper by C. Pautasso and E. Wilde:

 12 facets used for a remoting technology comparison: discovery, state, granularity

 ESOCC 2016 keynote by F. Leymann and PhD theses (e.g. C. Fehling):

 Four types of autonomy: reference (i.e., location), platform, time, format

© Olaf Zimmermann, 2018.

Page 8

http://www.soa-in-practice.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open
http://www.dzone.com/mz/cloud
https://www.infoq.com/architecture/
http://dret.net/netdret/docs/loosely-coupled-www2009/(1)
http://www2009.eprints.org/92/1/p911.pdf
http://esocc2016.eu/keynotes/

Agenda

 Context (recap)

 SOA principles and microservices tenets

 Selected Domain-Driven Design DDD patterns

 Strategic DDD

 Tactic DDD

 Web API Design and Evolution (WADE) project

 EuroPLOP 2017: Interface Representation Patterns (IRP), incl. Pagination

 Service Responsibilities and Granularity (Business/Technical)

 Quality (of Service), Evolution

 Microservices API Patterns (MAP)

 From DDD to WADE/IRP (and the REST of SOA)

 Mappings

 Practice identification

© Olaf Zimmermann, 2018.

Page 9

Three Perspectives on API Design: Builder(s) vs. Consumer

 API infrastructure design is different from API creation and usage

 E.g. Eclipse framework team defines extension point concept

 Plugins define extension points and use them

 Same for SOA and REST stakeholders:

 Standards people and vendors vs. designers of providers and consumers

© Olaf Zimmermann, 2018.

Page 10

Platform Usage

(Client/Consumer)

Platform Provisioning

(Middleware, Operating System)

Most pattern languages describe

platform design rather than

platform usage (targeting platform

designers rather than its users)

Platform Usage

(Server/Provider)

MAP (including its Interface

Representation Patterns)

targets platform users

Towards an Microservices API Pattern Language (MAP)

 Identfication (of API endpoints and calls a.k.a. services)

 Responsibilty, Structure, Quality (RSQ) patterns

 Evolution

© Olaf Zimmermann, 2018.

Page 11

Reference: Zimmermann et al., Interface Representation Patterns, Proc. of EuroPLOP 2017

http://eprints.cs.univie.ac.at/5161/1/WADE-EuroPlop2017Paper-FinalSubmissionOct19.pdf

MAP Example: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can a provider transmit large amounts of repetitive or inhomogeneous

response data to a consumer that do not fit well in a single response

message?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 12

© Olaf Zimmermann, 2018.

MAP Example: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses:

 Public APIs of social networks

Page 13

© Olaf Zimmermann, 2018.

Exercise: “Forces Jam”

 Which Quality Attributes (QAs) and other requirements/constraints are

the main decision drivers in microservices API design and

consumption?

 Which forces should the WADE/MAP pattern language focus on?

 What makes remote API design hard?

 How would you justify your design decisions?

Task a): List your top three to five (optional: refine/structure a la SEI quality tree)

 What are typical conflicts between these QAs/forces?

 Which tradeoffs should the MAP patern language discuss?

Task b): State at least two design time/build time QA conflicts (table/mind map)

© Olaf Zimmermann, 2016.

Page 14

Agenda

 Context (recap)

 SOA principles and microservices tenets

 Selected Domain-Driven Design DDD patterns

 Strategic DDD

 Tactic DDD

 Web API Design and Evolution (WADE) project

 EuroPLOP 2017: Interface Representation Patterns (IRP), incl. Pagination

 Service Responsibilities and Granularity (Business/Technical)

 Quality (of Service), Evolution

 Microservices API Patterns (MAP)

 From DDD to WADE/IRP (and the REST of SOA)

 Mappings

 Practice identification

© Olaf Zimmermann, 2018.

Page 15

Implementing Domain-Driven Design with APIs (IDD++)

 Mentioned in IDDD book (and related blog posts and presentations):

 Different layers, not 1:1 pass-through (interfaces vs. application/domain)

 Bounded Contexts (BCs) offered by API provider, one API endpoint and

IDE project for each team/system BC (a.k.a. microservice)

 Aggregates supply API resources or (responsibilities of) microservices

 DDD Services donate top-level (home) resources in BC endpoint as well

 The Root Entity, the Repository and the Factory in an Aggregate suggest

top-level resources; contained entities yield sub-resources

 Repository lookups as paginated queries (GET with search parameters)

 Additional rules of thumb (source: ZIO, literature):

 Master data and transactional data go to different BCs/aggregates

 Creation requests to Factories become POSTs

 Entity modifiers become PUTs

 Value Objects appear in the custom mime types representing resources

© Olaf Zimmermann, 2018.

Page 16

https://www.youtube.com/watch?v=lUCLFOISuXk

 How loosely should the classes/services be coupled?

 From a functional point of view? By autonomy type?

 From a quality perspective: performance,

availability,

security?

Online Shop/e-Commerce Scenario: How Many Services?

© Olaf Zimmermann, 2018.

Page 17

 It depends…

 on information need of

the stakeholder(s)

 on IT sourcing and

procurement strategy

 and other executive-

level architectural

decisions

Coupling Example in an Online Shop/e-Commerce (1/3)

© Olaf Zimmermann, 2018.

Page 18

 Service Cut 0: e-commerce monolith

Single program/process

Shared database

Service Boundary

(Remote Interface)

Coupling Example in an Online Shop/e-Commerce (2/3)

© Olaf Zimmermann, 2018.

Page 19

 Service Cut 1: Master Data Separation (Order with Order Items versus

Customer, Product)

Short-lived entities isolated from

long-lasting ones: reference, time,

platform, format autonomy

Coupling Example in an Online Shop/e-Commerce (3/3)

© Olaf Zimmermann, 2018.

Page 20

 Service Cut 2: Domain-Driven Design Aggregates (Order, Customer, Product)

Domain-Driven Decomposition:

Coupling Criteria?

Granularity Patterns?

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, Jhipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsiblities are

shown.

Coupling Criteria (CC) in “Service Cutter” (Ref.: ESOCC 2016)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

© Olaf Zimmermann, 2018.

Page 22

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

CC Card Template and Example

Page 23

© Olaf Zimmermann, 2018.

Service Cutter Tool – Architecture and User Interface

Page 24

© Olaf Zimmermann, 2018.

Presentation/Position Summary (ZIO)

 Services are here to stay, but microservices do not constitute a new style

 Microservices evolved as an implementation approach to SOA that leverages

recent advances in agile practices, cloud computing and DevOps

 Microservices Architecture (MSA) constrains the SOA style to make services

independently deployable and scalable (e.g., via decentralization)

 Domain-Driven Design (DDD) is one of many ways to get to service and API

design of quality and style

 There is no single definite answer to the “what is the right granularity?”

question, which has several context-specific dimensions and criteria

 Many forces apply, often conflicting

 Platform-independent service design can benefit from patterns

 Interface Representation Patterns such as Pagination

 Responsibility roles, quality improvement patterns such as Wish List

 APIs should stick to their POINT when being EXPOSed

© Olaf Zimmermann, 2018.

Page 25

https://ifs.hsr.ch/index.php?id=15667&L=4

Microservices – Literature and Resources

 “Building Microservices”, S. Newman (O’Reilly 2016)

 Sample chapters available online (free of charge)

 “Microservices” (auf deutsch), E. Wolf, dpunkt 2016

 http://dpunkt.de/a2016_downl/Microservices.pdf

 InfoQ Microservices zone

 http://www.infoq.com/microservices

 Microservices pattern languages (emerging):

 http://microservices.io/patterns/microservices.html

 http://blog.arungupta.me/microservice-design-patterns/

 http://samnewman.io/patterns/

 SEI SATURN 2015 workshop

 https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

© Olaf Zimmermann, 2018.

Page 26

http://dpunkt.de/a2015_downl/Microservices.pdf
http://www.infoq.com/microservices
http://microservices.io/patterns/microservices.html
http://blog.arungupta.me/microservice-design-patterns/
http://samnewman.io/patterns/
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

