DOMAIN-DRIVEN SERVICE
IDENTIFICATION:

FROM BOUNDED CONTEXTS
TO WEB APIS OF QUALITY AND
STYLE

Microservices Roundtable

Zurich, 26. Februar, 2018

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect
Institute fur Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

m Context (recap)

SOA principles and microservices tenets

Selected Domain-Driven Design DDD patterns

Strategic DDD
Tactic DDD

m Web API Design and Evolution (WADE) project
EuroPLOP 2017: Interface Representation Patterns (IRP), incl. Pagination
Service Responsibilities and Granularity (Business/Technical)
Quality (of Service), Evolution
Microservices API Patterns (MAP)

® From DDD to WADE/IRP (and the REST of SOA)
Mappings
Practice identification

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 2 .

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 2018. SOFTWARE

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

No single definition — “SOA is different things to different people”

Business
Domain
Analyst

» A set of services that a business wants to expose to their
customers and partners, or other portions of the organization.

» An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server). IT
Architect

« “A service is a component with a remote interface.” (M. Fowler)

» A set of architectural patterns such as enterprise service bus,
service composition, and service registry, promoting principles
such as modularity, layering, and loose coupling to achieve design
goals such as separation of concerns, reuse, and flexibility.

« Services have to be discovered Developer,
- Service invocations have to be routed, transformed, adapted Administrator
« Smaller services have to be stitched together to implement user needs

» A programming and deployment model realized by standards,
tools and technologies such as Web services.

Adapted from IBM SOA Solution Stack (S3) reference architecture and SOMA method, https://www-01.ibm.com/software/solutions/soa/

O HSR

HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

Page 3

https://www-01.ibm.com/software/solutions/soa/

Microservices — An Early and Popular Definition (2014)

Reference: http://martinfowler.com/articles/microservices.html

m J. Lewis and M. Fowler (L/F): “[...] an approach to developing a single
application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capabilities and
independently deployable by fully automated deployment machinery.
There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use

different data storage technologies.”

B |EEE Software Interview with J. Lewis, M. Amundsen, N. Josuttis:

INSIGHTS

(screen captions

are hyperlinks) Microservices in

Practice, Part 1

Microservices in Reality Check and Service Design
P ract 1C e 3 Pa rt 2 Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis

Service Integration and Sustainability

Microservices are in many ways a
best-practice approach for realizing
service-oriented architecture.

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 4

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://martinfowler.com/articles/microservices.html
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

Seven Tenets for Microservices Approach to SOA (2016/2017)

Fine-grained interfaces to single-responsibility units that encapsulate data and
processing logic are exposed remotely to make them independently scalable,
typically via RESTful HTTP resources or asynchronous message queues.

Business-driven development practices and pattern languages such as Domain-
Driven Design (DDD) are employed to identify and conceptualize services.

Cloud-native application design principles are followed, e.g., as summarized in
Isolated State, Distribution, Elasticity, Automated Management and Loose
Coupling (IDEAL).

Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot
persistence strategy; each service implementation has its own data store.

Lightweight containers are used to deploy and scale services.
Decentralized continuous delivery is practiced during service development.

Lean, but holistic and largely automated approaches to configuration and fault
management are employed within an overarching DevOps approach.

Reference: O. Zimmermann, Microservices Tenets — Agile Approach to Service Development and Deployment,
Proc. Of SummerSoC 2016, Springer Computer Science — Research and Development, 2016 (CSR&D Paper).

. . RAPPERSWIL Page5

HSR

HOCHSCHULE FUR TECHNIK

INSTITUTE FOR
SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

http://rdcu.be/mJPz

Patterns for Tactic DDD: Meta Model (Source: ZI10)

ApplicationService DomainService

v k!

InfrastructureService
Service types
e? | linheritance hierarchy)
"""" match DDD layers

Service

+ statelessOperation1(ValueObject1, RootEntityld): void

One Repository per Aggregate is
recommended in "DDD Reference” [Evans)

wltusen and "lmplementing DDD" [Vaughn)

consultRootEntityOfAnother Aggrega‘le

- name: Sting | AggregateRepository

+ checklnvarianti(): boolean = + addAggregateRoot(): void

+ findRootEntity(): void tinstantiater + removeAggregateRoot(): void

+ createRootEntity(): void L + searchEntity(String): void

openTransaction(): void "‘m\\

commifTransaction(): void V,,H h e

rollbackTransaction(): void g, me T

+ receiveAndDispatchDomainEvent(): void| . . e Pa

' \ ——
EntityFactory
fie =t - _aiisia "_t ijtin_ |+ createAggregate(Creationinput): Aggregate1
- globalld: Entityld + createRootEntity(Creationinput): Entity1
+ factoryMethod1(): Eniity + crea’teVaIueOb]ect(Creatlonlnput]: ValueObject1
e I
_— | instantiaten
- - tinstantiate® |
) < .
ValueObject Entity
. :ﬁ:gﬂg g‘;m - localld: Entityld
)) 9] - localEntityReference1: Entityld

- attribute3: ValueObject]

- attibute4: Entityld

lifecycleState: Enum

areadOnly»
+ calculate(): void
+ format(): void

o+ o+ o+

businessLogicOperation1(ValueObject!): EntityReferencet
entityModifier1(EntityReference1, ValueObject2): ValueObject2
stateTransition1(): Enum

processDomainEvent(): void

m Entity = “True 00”

Has id
Has state
Has behavior

® Root Entity
Visible outside of
Aggregate (by id)
m Value Object
No behavior

B Aggregate
Groups entities

Validates invariants
(e.g., cross-entity
business rules)

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 6
© Olaf Zimmermann, 2018.

INSTITUTE FOR
SOFTWARE

Strategic DDD Patterns: Meta Model (Source: ZIO)

Model Partitioning S Buy vs. Build B Partitionin g.
Concept Decision
Core Domain .
1 Subdomain: top down
fonceptual/fmctionat technical/organizational
/ \ ’ /” Bounded Context:
Supporting Subdomain » BoundedContext Context Map bOttO m u p
Subdomain _|>. 1N.reallzesPartsOf1”. l
5 :) m Context relationships
S ontot | ... | Publshed Published Language
Relationship Language
= (exposed by OHS etc.)

A
Shared Kernel
(Library)

consultRootEntityCfAnother

I_'_> Aggregate

Separate Ways

Local vs. remote?
Visibility?
(A)symmetry?
Open Host Service

- ol) Conformist Amou nt of con?:rol and
encapsulates other turns client into In.ﬂuence for Cllent?

tactic DDD patterns

(not shown)
\ — ACL as an option

alternativeTo

pertainsTo alternativeTo
requires
W . cusonrsiu R A ® Follow-on decisions
Technology Decisions Layer (ACL)

Technology, style

O HSR
HOCHSCHULE FUR TECHNIK Pa.ge 7

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

SOA Principle and IDEAL Application Property: Loose Coupling

®m Practitioner heuristics (a.k.a. coupling criteria) in books, articles, blogs:

SOA in Practice book by N. Josuttis, O’'Reilly 2007
11 types of (loose) coupling; emphasis on versioning and compatibility
IBM Redbook SG24-6346-00 on SOA and ESB (M. Keen et al.), IBM 2004

Coupled vs. decoupled continuum: semantic interface, (business) data model,
QoS (e.g. transactional context, reliability), security

DZone, IBM developerWorks articles, InfoQ, MSDN, ...

m Academic contributions (research results):

General software engineering/architecture literature since 1960s/1970s
Starting from D. Parnas (modularization, high cohesion/low coupling)
WWW 2009 presentation and paper by C. Pautasso and E. Wilde:
12 facets used for a remoting technology comparison: discovery, state, granularity
ESOCC 2016 keynote by F. Leymann and PhD theses (e.g. C. Fehling):

Four types of autonomy: reference (i.e., location), platform, time, format

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 8
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

http://www.soa-in-practice.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open
http://www.dzone.com/mz/cloud
https://www.infoq.com/architecture/
http://dret.net/netdret/docs/loosely-coupled-www2009/(1)
http://www2009.eprints.org/92/1/p911.pdf
http://esocc2016.eu/keynotes/

m Context (recap)

SOA principles and microservices tenets

Selected Domain-Driven Design DDD patterns

Strategic DDD
Tactic DDD

m Web API Design and Evolution (WADE) project
EuroPLOP 2017: Interface Representation Patterns (IRP), incl. Pagination
Service Responsibilities and Granularity (Business/Technical)
Quality (of Service), Evolution
Microservices API Patterns (MAP)

® From DDD to WADE/IRP (and the REST of SOA)
Mappings
Practice identification

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 9 .

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 2018. SOFTWARE

Three Perspectives on API Design: Builder(s) vs. Consumer

m APl infrastructure design is different from API creation and usage
E.g. Eclipse framework team defines extension point concept
Plugins define extension points and use them
m Same for SOA and REST stakeholders:
Standards people and vendors vs. designers of providers and consumers

MAP (including its Interface
Representation Patterns) Platform Usage Platform Usage
targets platform users (Client/Consumer) (Server/Provider)
Most pattern languages describe o
platform design rather than Platform Provisioning
platform usage (targeting platform (Middleware, Operating System)
designers rather than its users)
B HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 10 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 2018. SOFTWARE

Towards an Microservices API Pattern Language (MAP)

m |dentfication (of API endpoints and calls a.k.a. services)

® Responsibilty, Structure, Quality (RSQ) patterns

m Evolution

Interface Representation Patterns (IRP)

Foundations

API Role/Position

API Visibility

Decomposition and
Coupling Criteria

Common
:@ Concepts

Interface ldentification
(Design Process)

e

Core Service/Representation Design

[D] []
0~ 1
o+

Interface Evolution (Lifecycle Management)

Responsibility
(Arch. Roles and
Semantic
Granularity)

Structure Quality
(Performance,

(Basics,

[

API
Management
(Runtime
Operations)

-

Pagination, Security,
Parameter Reliability)

Types)

€3

Reference: Zimmermann et al., Interface Representation Patterns, Proc. of EuroPLOP 2017

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 11

© Olaf Zimmermann, 2018.

INSTITUTE FOR
SOFTWARE

http://eprints.cs.univie.ac.at/5161/1/WADE-EuroPlop2017Paper-FinalSubmissionOct19.pdf

MAP Example: Pagination (1/2)

m Context
An API endpoint and its calls have been identified and specified.

B Problem

How can a provider transmit large amounts of repetitive or inhomogeneous
response data to a consumer that do not fit well in a single response
message?

B Forces

Data set size and data access profile (user needs), especially number of
data records required to be available to a consumer

Variability of data (are all result elements identically structured? how often
do data definitions change?)

Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)
Security and robustness/reliability concerns

O HSR
. . HOCHSCHULE FUR TECHNIK Page 12

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

MAP Example: Pagination (2/2)

m Solution

Divide large response data sets into manageable and easy-to-transmit chunks.
Send only partial results in the first response message and inform the consumer

w

f

how additional results can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as
needed; agree on a request correlation and intermediate/partial results
termination policy on consumer and provider side.

Legend: Request

m Variants D @ m@ o
Cursor-based vs. offset-based M —
? | Page 1: {{r1).{r2)} o {:;,l :?g:;,r r?::u?.',’osrrs;
m Consequences L —— oo s
E.g. state management required Proo2 f—j ‘ @ (2, ¢3)
Z—: | Next Page: 3 (r1 ﬂ,”
® Know Uses: ? e X
— P () TR
Public APIs of social networks = \ ETY : B
M HSR
EE :AD::ESF(C;\:\:ILE FOR TECHNIK Page 13 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2018.

SOFTWARE

Exercise: “Forces Jam”

® Which Quality Attributes (QAs) and other requirements/constraints are
the main decision drivers in microservices API design and
consumption?

Which forces should the WADE/MAP pattern language focus on?
What makes remote API design hard?
How would you justify your design decisions?

Task a): List your top three to five (optional: refine/structure a la SEI quality tree)

® What are typical conflicts between these QAs/forces?
Which tradeoffs should the MAP patern language discuss?

Task b): State at least two design time/build time QA conflicts (table/mind map)

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 14 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 2016. SOFTWARE

m Context (recap)

SOA principles and microservices tenets

Selected Domain-Driven Design DDD patterns

Strategic DDD
Tactic DDD

m Web API Design and Evolution (WADE) project
EuroPLOP 2017: Interface Representation Patterns (IRP), incl. Pagination
Service Responsibilities and Granularity (Business/Technical)
Quality (of Service), Evolution
Microservices API Patterns (MAP)

® From DDD to WADE/IRP (and the REST of SOA)
Mappings
Practice identification

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 15 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 2018. SOFTWARE

Implementing Domain-Driven Design with APIs (IDD++)

® Mentioned in IDDD book (and related blog posts and presentations):

Different layers, not 1:1 pass-through (interfaces vs. application/domain)

Bounded Contexts (BCs) offered by API provider, one APl endpoint and
IDE project for each team/system BC (a.k.a. microservice)

Aggregates supply API resources or (responsibilities of) microservices
DDD Services donate top-level (home) resources in BC endpoint as well

The Root Entity, the Repository and the Factory in an Aggregate suggest
top-level resources; contained entities yield sub-resources

Repository lookups as paginated queries (GET with search parameters)

m Additional rules of thumb (source: ZIO, literature):
Master data and transactional data go to different BCs/aggregates
Creation requests to Factories become POSTs

Entity modifiers become PUTs
Value Objects appear in the custom mime types representing resources

HSR
HOCHSCHULE FUR TECHNIK Page 16 INSTITUTE FOR
SOFTWARE

RAPPERSWIL

© Olaf Zimmermann, 2018.

FHO Fachhochschule Ostschweiz

https://www.youtube.com/watch?v=lUCLFOISuXk

Online Shop/e-Commerce Scenario: How Many Services?

® How loosely should the classes/services be coupled?

From a functional point of view? By autonomy type?

Purchase Order From a quality perspective: performance,
- status:int ava"ab'“ty,
- totalAmount: int H
h_““———___ Order [tem secu rlty?
0.* Lo + amount: int
+ discount:int
Market Segment
- Product Catalog
- accountManager:int 1.
- productManager: Person
\ 1 1 /
O — Product m /t depends...
+ cid:String + id: GUID
+ address:tring + name: ManufacturerLabel on information need of

+ haslLoyaltyCard: boolean

+

deliveryTime: int

the stakeholder(s)

on IT sourcing and
procurement strategy

and other executive-

Retail Customer Wholesale Customer .
level architectural
+ firstName: String + taxMumber: GUID o
+ lastMame: String + name: CompanyNamestring dEC|S|0nS
™ HSR
HOCHSCHULE FUR TECHNIK Page 17 : INSTITUTE FOR
. . RAPPERSWIL o SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

Coupling Example in an Online Shop/e-Commerce (1/3)

B Service Cut 0;: e-commerce monolith

Service Boundary
(Remote Interface)

Purchase Order Order ltem
- status:int “p—— + amount:int
- totalAmount:int 1 1.% &+ dizcount:int
a.*
Market Segment P - log
- scooumMwe - preductManager: Person
\ 1 /l
Customer Product
+ cid:String + id: GUID
+ address: String + name: ManufacturerLabel
+ haslLoyaltyCard: boolean + deliveryTime:int
Retail Customer Wholesale Customer S | /
+ firstName: 5tring + taxNumber: GUID Ing € program process
+ lastMame: 5tring + name: CompanyNameString Shared database
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
. . RAPPERSWIL Page 18 :

© Olaf Zimmermann, 2018.

FHO Fachhochschule Ostschweiz

SOFTWARE

Coupling Example in an Online Shop/e-Commerce (2/3)

m Service Cut 1. Master Data Separation (Order with Order Items versus
Customer, Product)

Purchase Order Order ltem
status: int "7 + amount: int
totalAmount: int 1 1%« discount: int

X 0.* \1
/ |

Market Segment e log

accountManager: int

v .

- preductManager: Person

Customer Product
+ cid:String + id: GUID
+ address: 5tring + name: ManufacturerLabel
+ haslLoyaltyCard: boolean + deliveryTime: int
——— ——— Short-lived entities isolated from
+ Restomcil |+ vMomber GHIEI long-lasting ones: reference, time,
+ lastName:5tring + name: CompanyMNamestring

platform, format autonomy

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 19 M
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

Coupling Example in an Online Shop/e-Commerce (3/3)

m Service Cut 2: Domain-Driven Design Aggregates (Order, Customer, Product)

Purchase Order Order ltem
status: int "7 + amount: int
totalAmount: int 1 1%« discount: int

X 0.* \1
i |

Market Segment e log

accountManager: int

v .

- preductManager: Person

Customer Product
+ cid:String + id: GUID
+ address: String + name: ManufacturerLabel
+ hasloyaltyCard: boolean + deliveryTime: int
Retail Customer Wholesale Customer Domain-Driven Decomposition:
+ firstName:String | |+ taxNumber: GUID Coupling Criteria?
+ lastName:5tring + name: CompanyMNamestring

Granularity Patterns?

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 20 M
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

[HOCHSCHULE FUR TECHNIK Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

RAPPERSWIL

. . COMPUTER SCIENCE

(_s\, Advisor: Prof. Dr. Olaf Zimmermann
ii ’:
Bachelor Thesis Fall Term 2015 ZUhIke -

Co-Examiner: Prof. Dr. Andreas Rinkel

empowering ideas

Software Lukas Kolbener Michael Gysel Project Partner: Zuhlke Engineering AG

A Software Architect’s Dilemma....

e Con | | Compatibility | I Conatraimts | | Communication
O Step 1: Analyze System senar :

] — Entity-relationship model I | I I
How do | split - Use casers]» - EaaEaa
. — System characterizations BTy
my system into - Aggregates (DDD)
services? o o
Coupling information is Pralen

extracted from these artifacts.

Step 2: Calculate Coupling |

— Data fields, operations and artifacts

are nodes. Step 3:
— Edges are coupled data fields. Visualize Service Cuts [Sumiee < 8 - i
— Scoring system calculates edge ‘ m . . - a 7,“ -
weights. — Priorities are used to

— Two different graph clustering reflect the context.

Cutter
algorithms calculate candidate — Published Language vt [T
service cuts (=clusters). (DDD) and use case oy
e [—r .
N7 responsiblities are . o A
N |~ ~ B Fommnk o .~]
AN X shown. | = ™ o B
(e ‘\\ _2) . B
AN A S N i
AR O ot]
"@’A‘:\\\\\\ & i -
Ab“ﬁ§\‘ S . Compatibility Criteria
G AN)) e strsturs vorauy
R Technologies: = ErErEeT
Java, Maven, Spring (Core, FE—

Boot, Data, Security, MVC),
Hibernate, Jersey, Jhipster,
AngularJS, Bootstrap

A clustered (colors) graph. https://github.com/ServiceCutter

Coupling Criteria (CC) in “Service Cutter” (Ref.. ESOCC 2016)

Cohesiveness

Constraints

Communication

Consistency .-
Constraint [Mutability
Security Network Traffic
Constraint Suitability

Semantic
Proximity Shared Owner
Identity &
Lifecycle Latency
Commonality - o
h J i N
Security
Contextuality

Compatibility
Structural Content
Volatility Volatility
Consistency Availability
Criticality Criticality
Storage Security
Similarity Criticality

Predefined
Service
Constraint

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

m E.g. Semantic Proximity can be observed if:

Service candidates are accessed within same use case (read/write)

Service candidates are associated in OOAD domain model

® Coupling impact (note that coupling is a relation not a property):

Change management (e.g., interface contract, DDLS)

Creation and retirement of instances (service instance lifecycle)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 22
© Olaf Zimmermann, 2018.

INSTITU

TE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

CC Card Template and Example

+
[Coupling Criteria Identifier and Name]
Description [A brief summary of the Coupling Criterion (CC) w.r.t. its
impact on/usage of nanoentities.]
System Specificati- [Requirements engineering input and software architecture
on Artifacts (SSAs) concepts/deliverables pertaining to this coupling criterion.]
Literature [References to books, articles, and/or blog posts.]
Type Cohesiveness | Compatibility | Constraint | Communication
CC-1 Identity & Lifecycle Commonality es for this CC. Only applies to
. 1 i b 11 b 1 %
Description Nanoentities that belong to the same identity and therefore |2 critical”, “normal”, “low]
share a common lifecycle. a
User Representation - UML class diagrams (Same Class, Composition, Inheri-
tance)
' D“‘“’““‘F' CC-2 Semantic Proximity
Literature Entity defin o))
Some object| Description Two nanoentities are semantically proximate when they
They repres have a semantic connection given by the business domain.
and often a The strongest indicator for semantic proximity 1s coherent
Type Cohesivenes (joint) access of/to nanoentities within the same use case.
Perspective Domain . : s
i p tepisti / User Representations — Coherent access to or updates of nanoentities in
laracteristics n/a
: (SSAs) use cases.
— Aggregation or association relationships m an
entity-relationship model.
w- H3R NSTITUTE FOR
HOCHSCHULE FUR TECHNIK Page 23 : I ITU
. . RAPPERSWIL ° SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

Service Cutter Tool — Architecture and User Interface

Browser

Bootstrap

|
|
upload JSON

\'%

AngularJS

N
9" visualization
& Visu |Iz |
I

Editor

Spring Boot

JHipster

Spring Data

upload model
\'%

E

Spring MVC

Spring Security

A\

c_:,\)
&’ service cut
¢ I

|
ngine

2 Service Cutter

Home

Service Cutter

Service Cutter

#1 Cargo Tracking v

u []
Leg loagtHffefillovement departureTime
Leg.unloadTime

a
RouteS kifcation artvalDesdy estimatedariBimme

CarrierMovement arivalLocation Delivery.routingStatus

Location.name L n
eg loadLocation I:‘ Voyage voyageNumber
L]
Senice B Senvicg Arienviovement departureLocation
| Cargo trackingld i
Location. unLocode - Rolﬁspecmcal\cn,ongm
Leg. u i NGASgMIovement arrvalTime:

v\
RouteSpecification.

transportStatus

HandlingEvent type

" Fullscreen

Service C
Responsible for Use Cases:

« ViewTracking

+ handleCargoEvent
Published Language

Published Language between Service A - Service C

B system Specification

@ || Q suchen

¥ Service Cuts

GEETETEEN | 3, Export JSON

Priorities
Cohesiveness Criteria
Identity & Lifecycle Commonality
Semantic Proximity
Shared Owner
Latency
Security Contextuality
Compatibility Criteria
Structural Volatility
Consistency Criticality
Availability Criticality
Content Volatility
Storage Similarity
Security Criticality
Constraints Criteria
Consistency Constraint
Predefined Service Constraint

Security Gonstraint

Service Dependencies

w8 9 34 40 =

U Criteria Catalog & Account ~
M v
u v
M v
u v
M v
X5 v
xs v
xs v
xs v
xs v
xs v
] v
] v
] v

Spring Boot Jersey e Aigorithm
« Voyage voyageNumber Leung v
. Routespec\ﬂcalmﬂ destination
Spring Data Graph LibS « Delivery routingStatus
M HSR &
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 24 °
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2018.

Presentation/Position Summary (ZIO) E&E

m Services are here to stay, but microservices do not constitute a new style

Microservices evolved as an implementation approach to SOA that leverages
recent advances in agile practices, cloud computing and DevOps

Microservices Architecture (MSA) constrains the SOA style to make services
independently deployable and scalable (e.g., via decentralization)

Domain-Driven Design (DDD) is one of many ways to get to service and API
design of quality and style

® There is no single definite answer to the “what is the right granularity?”
guestion, which has several context-specific dimensions and criteria

Many forces apply, often conflicting

m Platform-independent service design can benefit from patterns
Interface Representation Patterns such as Pagination
Responsibility roles, quality improvement patterns such as Wish List

m APIs should stick to their POINT when being EXPOSed

O HSR
. . HOCHSCHULE FUR TECHNIK Page 25

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

https://ifs.hsr.ch/index.php?id=15667&L=4

Microservices — Literature and Resources

m “Building Microservices”, S. Newman (O’Reilly 2016)
Sample chapters available online (free of charge)

. . Monolithic architecture
m “Microservices” (auf deutsch), E. Wolf, dpunkt 2016 uicroservices architecture

APl gateway

http://dpunkt.de/a2016_downl/Microservices.pdf Client-side discovery
Server-side discovery
® InfoQ Microservices zone Service registry
. . . Self registration
http://www.infog.com/microservices 3rd party registration

Multiple service instances per host
Single service instance per host
Service instance per VIV

m Microservices pattern languages (emerging): service instance per Container

] ; ; ; ; Database per Service
http://microservices.io/patterns/microservices.html " P e

http://blog.arunqupta.me/microservice-design-patterns/

http://samnewman.io/patterns/

m SEI SATURN 2015 workshop
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 26
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2018

INSTITUTE FOR
SOFTWARE

http://dpunkt.de/a2015_downl/Microservices.pdf
http://www.infoq.com/microservices
http://microservices.io/patterns/microservices.html
http://blog.arungupta.me/microservice-design-patterns/
http://samnewman.io/patterns/
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

