
Linking Design Decisions to Design Models in
Model-based Software Development

Patrick Könemann1 and Olaf Zimmermann2

1 Informatics and Mathematical Modelling, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark, pk@imm.dtu.dk

2 IBM Research – Zürich, Säumerstrasse 8, 8803 Rüschlikon, Switzerland,
OLZ@zurich.ibm.com

Abstract. Numerous design decisions are made in model-based soft-
ware development which are often not documented explicitly. Hence, the
design knowledge is ’in the designers mind’ and communicated orally, if
at all, and the rationale behind the decisions is lost. Existing tools tackle
this problem for architectural decisions which refer to the higher level
architecture of a system. However, these decisions are separate artifacts
and not linked to individual design model elements. Hence, there is no
automatic check whether the design models comply with made decisions.
This paper presents concepts for explicitly linking design decisions and
design model elements. As first class artifacts, design decisions can be
used for documentation, consistency checking, and reuse. In case consis-
tency constraints are violated, the user is notified that the design models
no longer comply with the decisions made. Reuse is realized by extracting
design model changes as reusable patterns for recurring decisions.

1 Introduction

Development of software systems is done in teams today, and models improve the
communication within the teams and help to develop such systems. Model-based
software development increases the productivity because the level of abstraction
rises and models (e.g. in the Unified Modeling Language, UML [1]) are first class
artifacts: the models are used for documentation, discussion, and to some extent
also for code generation [2].

One way of documenting design decisions in such projects is the use of de-
cision management systems. Decisions might either be specific to one particular
project or generic, and thus reusable in similar contexts [3]. Reusable decisions,
e.g. the use of design patterns [4] to solve a particular design issue, can be stored
as best practices and reused in other projects. This makes design decisions valu-
able artifacts for expressing and sharing design knowledge.

The state-of-the-art decision management systems are only used for docu-
mentation, analysis, and for sharing architectural design knowledge [5, 16, 11],
and are isolated from the actual models in model-based software development.
All of these tools store the information semi-formally, i.e. structured by decisions.
Current modeling tools, on the other hand, have only limited or no capabilities

for documenting design decisions. Hence, formal design models and semi-formal
design decisions are separated. Our previous work already introduced decision
enforcement as a proof-of-concept which is the first step to update design models
according to made design decisions [6].

The concepts in this paper introduce an explicit link between design mod-
els and design decisions in model-based software development. Our vision is to
treat design decisions as first-class artifacts and to exploit them to integrate
design models and semi-formal documentation: an explicit link between design
model elements and design decisions will allow keeping the design models con-
sistent with the decisions made. Moreover, we propose concepts for automating
redundant work on design models with the use of model differences—the latter
are used to store reusable design model changes that realize recurring design
decisions.

All concepts are tool-independent; to integrate a given modeling tool or deci-
sion management system, it has to realize the interface specified in [7]. In essence,
a modeling tool must offer reflection (e.g., as EMOF [8]) and design decisions
must be mapped to the decision meta model of the interface.

The main benefits of our contributions are reuse of design decisions and the
corresponding changes in the design models as well as automated recognition of
consistency violations between these artifacts. The goals is to make the devel-
opment of model-based software faster and less error-prone (because of reuse).

The remainder of the paper is structured as follows. Sect. 2 introduces an
example, Sect. 3 states the state of the art as well as our goals, Sect. 4 defines
our central concept of a binding and its use, Sect. 5 sketches the prototypic
implementation, Sect. 6 discusses related work, and Sect. 7 concludes the paper.

2 Example

In this section, we introduce a running example to illustrate our concepts. It
is small on purpose in order to focus on relevant properties. It consists of two
decisions, taken from a case study in [7], that describes the development of a
web application with respect to made design decisions. Here we assume that the
design decisions to make (described by design issues and their solutions, called
alternatives) are already known and available in a decision management tool.

The first issue, Session Awareness, concerns an existing class Controller in
the UML design model (which was created due to a previous design decision)
and deals with the issue whether or not to introduce session support in the web
application. Possible solutions are Yes and No, as sketched informally in a sim-
plified decision model in Fig. 1. Here we make the decision to pick the alternative
Yes which induces another issue Session Management. Note that although this
particular choice does not affect the design models directly, subsequent decisions
in fact can have impact on the design models as explained next.

The second issue, Session Management, concerns how the session manage-
ment will be realized. The choice will be the Server Session State pattern (as
defined by Fowler [9]) describing a controller, a session manager, and a session

Alternative
No

Issue
Session

Awareness

Alternative
Yes

Outcome

solution decision

Issue
Session

Management

Outcome

solution

decision

induces

solution

Alternative
Database
Session

State

Alternative
Client

Session
State

Alternative
Server

Session
State

solution
solution

ch
os

en
Al

te
rn

at
iv

e

ch
os

en
Al

te
rn

at
iv

e

project-independent
project-specific

Fig. 1. Design decisions Session Awareness and Session Management

presentation presentation

Controller SessMan Controller SessMan

SessObjectj

presentation
presentation

presentation

Controller SessionManager
Controller SessionManager

SessionObject

Fig. 2. Parts of the design model before and after the decision Session Management

object. Other alternatives are Client Session State and Database Session State.
As depicted on the left-hand side of Fig. 2, a session manager already exists –
for instance, due to previous work on the design model.

The next step is the realization of the server session state in the design
model, i.e. adding design model elements according to the chosen pattern (the
result is shown on the right-hand side of Fig. 2). That work is usually tedious
and error-prone although it varies with the complexity of the selected solution.
There might also be variations of how a particular solution can be realized in the
design models. Moreover, the very same solution could have been realized before
in another project, and, hence, its realization in design models is recurring work.

We use this example in the next sections to illustrate our approach that adds
support for automatic consistency checking (whether the design models comply
with made design decisions) and reuse of realizations of design decisions. Thus,
design decisions are not lost but captured explicitly.

Although the example is dealing with a web application, all model-based
software development processes are supported in which design decisions can be
documented and recur in similar projects.

3 Requirements

This section gives an overview of the state-of-the-art of decision management,
introduces model differences, and states the goals of our contributions.

3.1 Current Situation

Design knowledge in terms of design decisions consists mostly of informal infor-
mation (text) structured as follows. A design decision in terms of the system’s
architectural design consists of a design issue or problem, several constraints and

Issue
name : String
problemStatement : String
decisionDrivers : String

Alternative
name : String
description : String
pros : String
cons : StringOutcome

status : OutcomeStatus
assumptions : String
justification : String
consequences : String

solutions
0..*

decisions
0..*

chosenAlternative

0..1

relates
0..*

Fig. 3. A typical design decision metamodel in existing work

ModelDifferencesModelChange
lowerBound : int
upperBound : int

AddElementModelChange MoveElementModelChange AttributeModelChange
attribute : Property
value : Object

...

ModelElement
modelChanges

0..*

parent0..1

changedElement

0..1

Fig. 4. An excerpt from a typical metamodel for model differences in existing work

assumptions, one or many solutions, and a rationale, amongst others [10]. The
solutions describe how they shall be applied; in case of design patterns it might
refer to its definition and/or informally describe its realization in the context
of the issue. Moreover, we distinguish between project-independent and project-
specific decisions, at which the former are reusable decisions and the latter are
only documented for one particular project [11].

A typical design decision metamodel is shown in Fig. 3 which can be mapped
to multiple decision management tools: a design decision addresses a particular
design problem (Issue), considering one or many solutions (Alternatives), and
the rationale why a particular alternative was chosen (Outcome). Attributes like
problemStatement and justification describe the properties mentioned before.
The association relates between alternatives and issues allows relating decisions
to each other; the reference induces in Fig. 1 is an instance of it. This metamodel
is based on the one specified in [6], in particular concerning the distinction be-
tween project-independent parts (issues and alternatives) and project-specific
parts (outcomes). Design model changes are, however, not included in any ex-
isting work of decision management we are aware of.

Model differences describe changes in a design model, e.g., adding a class
and three associations (cf. decision 2 in the example in Sect. 2). Hence, they
can be used for describing design model changes for a particular realization of a
solution of a design decision. Here it is sufficient to know that model differences
consist of several ModelChanges as shown in Fig. 4. Concrete changes are, for
instance, addition or movement of elements or change of attributes ([12] discusses
selected differencing approaches in more detail). lowerBound and upperBound
of ModelChange are specific for our differencing technology [13] and define how
often a particular change may be applied.

Design
Models

Design
Decisions

works
on

documents

no relation
in existing

work

Binding

Design-
Model-

Changesadded to
solutions

refers to
changed
elements

refers to
changes

new

1.

2.

3.

Documentation:
create and see design decisions

together with design models

Consistency Check:
between design models

and design decisions

Design Decision Reuse:
store and reuse design model changes

together with design decisions

Fig. 5. Binding and design model changes enable our goals

We require our solution to be independent of particular tools. That is to say,
the metamodels for design models and design decisions shall not be modified.
This ensures that the concepts for the binding are tool-independent and are thus
applicable to many modeling tools and decision management systems.

3.2 Goals

This section states the goals of our contributions. The left-hand side of Fig. 5
sketches the situation without our extensions: design decisions are isolated from
the design model. Adding a Binding and DesignModelChanges, as shown in the
center of the figure, enables our goals to ease documentation, to check consis-
tency, and to reuse design model changes of design decisions.

Goal: Documentation. Almost every change in design models can be seen as
a design decision. However, most decisions, even if they are made consciously,
are not documented because of lacking tool support and developers lacking dis-
cipline. To overcome that problem, our goal is to explicitly link design models to
the design knowledge stored in a decision management system. That is, related
design decisions can be retrieved for each element in the design model. For in-
stance, if the developer selects the class SessionObject (cf. Sect. 2), the tool shall
return a list of design decisions containing the decision SessionManagement.

Goal: Consistency. Another goal is to validate whether design decisions and
their induced changes in the design models are consistent with each other. That
is, for the decision Session Management in the example, the class SessionObject
and the three associations between that class, the Controller, and the Session-
Manager must prevail in the design model. If any of these classes or associations
are removed later on, the design model is not consistent anymore with the result
of the decision and the developer shall be notified.

Goal: Design Decision Reuse. The last goal addresses reuse of design deci-
sions in the same or in a similar context, e.g. in another project. Realizing the
same solution multiple times in one or several projects is recurring and error-
prone work. Design model changes of a particular design decision, in the form

of model differences, can be extracted from one design model and applied to
another design model the next time that decision is made. That will not happen
fully automatically but the developer has to revise (and, if necessary, refine) the
application of design model changes. That said, there might be similar design
model changes which realize the same solution, depending on the scenario and
context; there are, for instance, multiple realizations of the server session state
pattern. Hence, our goal is to support multiple realizations per solution.

4 Concepts: Binding Design Knowledge to Design Models

Next, existing and new components are introduced, the binding is defined, and
finally we explain how to use the binding for documentation, consistency check-
ing, and reuse of design decisions.

4.1 Relevant Components

This section lists all relevant existing components before defining a formal link
between design decisions and design models. The link has to connect the particu-
lar decision, more precisely the Outcome of a decision and its chosen Alternative
(cf. design decision metamodel in Fig. 3), with the design model elements the
decision affects. A design model element can be any part of the design model;
in case of UML it would be instances of Element, that are, for example, classes,
associations, attributes, actors for use cases, or messages in a sequence chart [1].

ModelDifferences, which describe how a model should be changed when a
design decision is made, contain a set of individual ModelChanges (cf. metamodel
for model differences in Fig. 4).

4.2 Binding between Design Decisions and Design Models

This section defines a new artifact, the DecisionModelBinding, to achieve our
goals listed in Sect. 3.2. We first sketch it informally with the help of the running
example before we define it. Its purpose is to map each change from the model
differences to the design model elements the particular design decision affects.

In case of the design decision Session Management from the example in
Sect. 2, the binding consists of a couple of ModelElementBindings, one for each
design model element. Fig. 6 sketches the overall picture for that decision. The
design model on the left-hand side and the design decisions on the right-hand side
are already known from Sect. 2. The center part shows the project-independent
ModelDifferences and the project-specific DecisionModelBinding. That is, the
ModelDifferences describe how the design model is changed for that specific al-
ternative (this is the reusable realization of the alternative). The DecisionMod-
elBinding links these changes to the actual design model elements. We made
this separation because the ModelDifferences are reusable and, thus, project-
independent (required for Goal: Design Decision Reuse) whereas the Decision-
ModelBinding is only used for one particular design model and is project-specific.

Model-
Differencespresentation

Controller SessionManager

presentation

Controller SessionManager

SessionObject

Design Model Decision Management

Issue
Session

Awareness

Alternative
Yes

Outcome

solution decision

Issue
Session

Management

Alternative
Server

Session
State

Outcome

solution decision

induces

binding

Binding between Design Models and Design Decisions

Decision-
Model-
Binding

before the design decision:

after the design decision: modelDifferences
realization

newly introduced concepts for binding

project-independent
project-specific
ModelElementBinding

Fig. 6. Example binding between design decisions and design model

ModelElementBinding

SessionObject

i n s t a n c e o f

Concrete Syntax Meta ModelAbstract Syntax

: AddElementModelChange
lowerBound = 1
upperBound = 1

: ModelElementBinding

ignore = false

SessionObject : Class
abstract = false
…

ModelChange
lowerBound : int
upperBound : int

ModelElement

container() : ModelElement

i n s t a n c e o f

Concrete Syntax MetamodelAbstract Syntax

SessionObject

modelElements

modelChange1

0..*

ignore : boolean

Fig. 7. One ModelElementBinding in concrete and abstract syntax and its metamodel

Figure 7 shows one of the binding elements in detail, namely the binding
for the added class SessionObject. The left-hand side shows the concrete syntax
whereas the abstract syntax (UML object diagram) of that binding is shown in
the middle. The ModelElementBinding contains references to both, the change
AddElementModelChange in the model differences and to the SessionObject in
the design model. Furthermore, the figure shows the metamodel elements for
this scenario on the right-hand side. The lowerBound and upperBound define
how many design model elements are allowed for a particular binding.

The definition of the binding is given as a metamodel in Fig. 8. The classes
in the middle row define the binding; the DecisionModelBinding and ModelEle-

ModelChange
lowerBound : int
upperBound : int

ModelDifferences

ModelElementBinding
ignore : boolean

ModelDifferenceBinding DecisionModelBinding

Alternative

OutcomeModelElement

container() : ModelElement

Project-independent

Project-specific

Binding

Model related Decision related

modelChange
1

modelChanges

0..*

modelElementBindings

0..*

modelDifferences

1
realizations

0..*

modelDifferenceBinding

1

modelElements

0..*

binding0..1

alternative

1 chosenAlternative

1

Fig. 8. Metamodel of the binding between design decisions and design model

mentBindings in Fig. 6 are their instances, respectively. The classes are vertically
divided into being design model-related and decision-related. The other compo-
nents in the figure (already introduced in Sect. 4.1) are horizontally divided into
being project-independent and project-specific. They are explained next.

– An Alternative is a solution in a design decision and may contain several
realizations. An Outcome is the result of a particular decision and points to
the chosen alternative.

– A ModelChange defines an individual change in the design model, Model-
Differences groups them logically as a realization for an alternative.

– A ModelElement is an arbitrary element in the design model.
– A ModelElementBinding links a ModelChange to the affected ModelElement

(if ignore is true, this binding is not validated); a ModelDifferenceBinding
groups the binding logically; a DecisionModelBinding connects the Model-
DifferenceBinding to the outcome, that is, to the result of the decision.

Note that the design model does not know about the binding because we do
not want to modify the modeling tool. Moreover, Alternative and Outcome are
just wrapper classes for alternatives and outcomes in a decision management
system. Thus, the references Alternative.realizations to ModelDifferences and
Outcome.binding to DecisionModelBinding belong to these wrapper classes. This
level of indirection keeps all decision related classes independent of the binding.

Since the explicit binding links design model elements and design decisions,
the rationale and other documentation can directly be annotated to the design
model (Goal: Documentation).

4.3 Consistency Check

It is easily possible to check the consistency between design models and made
design decisions with the binding concepts introduced in Sect. 4.2. We defined
a set of constraints for that purpose, for instance that added elements must

prevail in the design model. A violated constraint produces either a warning or
an error, specified by the constraint’s severity. In case of constraint violations,
the developer is notified with a description of the constraint and the cause. These
constraints apply to design-time only.

Constraint Levels. In order to check that the design model corresponds to a
made design decision, two criteria have to be checked. Firstly, all related design
model elements must exist. Secondly, all design model changes defined by the
model differences must prevail. Starting with these two criteria, we identified
three levels with increasing granularity.

1. Element level: all design model elements linked to the binding must exist.
This level is independent of design decisions and concrete changes in the
design model but concerns only the relation between the binding and the
existence and cardinality of design model elements.
Example: the class SessionObject is referenced by a ModelElementBinding
and, thus, must exist in the design model (if ignore is false).

2. Change level: all changes must prevail in the design model.
This level is specific for changes which are made due to a design decision.
Example: if a class is changed to being abstract, that change must prevail
in the design model.

3. Decision level: additional custom constraints for a particular decision.
Constraints in this level are specific for decisions and do not necessarily relate
to model differences. They are specified manually by the developer during
design-time.
Example: the classes Controller and SessionObject must be located in the
same package in the design model.

Constraints for the first two levels are static—we defined them once and for
all. Custom constraints (decision level), on the other hand, can be specified by
the developer and concern individual decision-related properties in the design
model. Two examples from the element and the change level follow. We use the
Object Constraint Language (OCL) [14] to define them as invariants.

Constraints Excerpts. The element level contains exactly the three invari-
ants shown in Listing 1.1. They apply to all ModelElementBindings (context)
and ensure that the correct number of design model elements is bound. The
cardinality is defined in the attributes lowerBound and upperBound of the class
ModelChange (cf. binding definition in Fig. 8) and is checked in lines 4–5. The
third invariant (line 8) checks that all referenced design model elements are de-
fined which includes the check that added elements prevail in the design model.

1 context ModelElementBinding
2

3 −− the binding contains l i n k s to the correc t number of model elements
4 inv lowerBound : modelChange . lowerBound <= modelElements−>s i z e ()
5 inv upperBound : modelChange . upperBound >= modelElements−>s i z e ()
6

presentation

Controller SessionManager

SessionObject

data

Decision-
Model-
Binding

ModelDifferences
1..1

1..1 1..1

1..1

1..1

1..1 1..1

?

project-independent
project-specific
ModelElementBinding

Fig. 9. Example scenario with constraint violations

7 −− a l l model elements e x i s t and are def ined
8 inv modelElements : modelElements−>forAll (e | not e . oc l I sUnde f ined ())

Listing 1.1. Three constraints for the element level (severity: error)

In contrast to the element level, change level constraints check design model-
specific properties, for instance whether a class is abstract or not. Thus, the
constraints have to access properties which are design model specific. The con-
straint in Listing 1.2 checks whether added elements are contained in their
expected containers. It uses the reflective call container()

3 (line 6) to retrieve
the actual container and compares it with the expected value AddElementMod-
elChange.parent (cf. metamodel in Fig. 4) in line 7. The invariant is only relevant
for AddedElementModelChanges, hence the implication in line 5.

1 context ModelElementBinding
2

3 −− a l l added elements are contained in the expected parent
4 inv addedElementContainedInExpectedParent :
5 modelChange . oclIsTypeOf (d i f f : : AddElementModelChange) implies
6 modelElements−>forAll (e | e . conta ine r () =
7 modelChange . oclAsType (d i f f : : AddElementModelChange) . parent)

Listing 1.2. A constraint for the change level (severity: warning)

Example. The following example illustrates the consistency check. The left-
hand side of Fig. 9 shows a modified design model: SessionObject was moved
to another package and the association between Controller and SessionObject
was removed. Consequently, not all design model changes induced by the design
decision Session Management prevail. Using the constraints, we can automati-
cally detect these violations: the upper and lower bounds of each ModelChange
(denoted with 1..1 for model changes in Fig. 9) match the number of referenced
design model elements, so we are safe here. However, one ModelElementBinding
has a dangling reference, i.e. it points to a design model element that does not
exist anymore (invariant in line 8 of Listing 1.1). This violation is presented to
the developer with the severity error. Moreover, the parent for the added ele-
ment SessionObject differs from the one defined in the model change (invariant

3 This constraint requires an EMOF-compliant [8] metamodel because EMOF provides
facilities for reflection like the operation container() : ModelElement.

Issue

Alternative Outcome

Model-
Differences

1. review / refine
location

2. change model
(automatically)

Decision-
Model-
Binding

3. create binding
(automatically)

project-independent
project-specific
ModelElementBinding

Fig. 10. Reusing Design Decisions by applying model differences

in Listing 1.2). This violation, in contrast, is presented with the severity warning
because the added element still exists.

These constraints ensure that for each design decision all relevant design
model elements exist (element level) and that all changes prevail in the design
model (change level). Hence, it is now automatically possible to verify that design
decisions are realized in the design model (Goal: Consistency).

4.4 Reusing Design Decisions

Up to now, we defined the binding and explained its use for consistency check-
ing. The question is how to create these bindings. Similar to having the design
knowledge already predefined in some decision management system, we assume
that the model differences representing design model changes have been created
and attached to an alternative in advance. At this point, one can think of these
model differences as a design template extracted from a sample model, a previous
project, or a pattern repository.

Next, we explain how a binding is created as a result of a made design decision
(sketched in Fig. 10). Once the decision Session Management is made, i.e. the
developer selects a particular alternative, she/he chooses one of the attached
realizations (in form of model differences):

1. The developer has to review/refine the location for applying the changes
to the design model. In the example, the package presentation and the two
classes Controller and SessionManager must be selected.

2. The design model is (automatically) changed according to the model differ-
ences. As for any automatic step, it is recommended to review all changes.

3. Then the binding is (automatically) created and contains one ModelElement-
Binding for each changed design model element.

Overall, the only manual work for realizing a design decision in the design
model is to define the correct location where to apply the design model changes
and to review them afterwards (instead of manually changing the design model).
The binding can then be used for the goals Documentation and Consistency
Checking.

EMF

EMF Compare

Binding Validation

Decision Binding

Webtools

Decision Management
(incl decision meta model)

Design
Models

Design
Decisions

Decision Management
System

via web service

Model Differencing

Modeling Tools

Difference Binding

EMF ValidationOCL

Decision
Realizations

Stored as
Model differences

for solutions of
design decisions

reused
components

modified
components

new
components

external
tool

Eclipse
platform

data access
dependency

Decision
Binding

Fig. 11. The architecture of the prototype

5 Realization

This section gives some insight into the realization (architecture and some parts
of the GUI) of our prototype. All concepts presented in Sect. 4 are implemented.

Architecture. Here we briefly outline the architecture of the prototype. We
have chosen Eclipse as the base platform because many technologies already exist
for reuse and because it is easily extendable. Figure 11 informally sketches the
dependencies between used and new components. Their purpose in the prototype
is explained on the website http://imm.dtu.dk/~pk/decisions.

One can easily see that the component setup conforms to the binding def-
inition in Fig. 8. We decided to keep the Difference Binding and the Decision
Binding separate because the Difference Binding is independent of any design
decision—it can be stored after applying model differences to a model and can
also be exploited for other things, for instance, model synchronization.

In order to create the binding, we extended the algorithm for difference appli-
cation in the component Model Differencing. The extension is straightforward:
every time a change is made to the design model, e.g. an element was added or
moved, corresponding ElementBindings (cf. Fig. 8) are created.

User Interface. This section sketches the realization of the user interface for
the presentation of design decisions within Eclipse and for consistency checking.

The left-hand side of Fig. 12 shows all design decisions of the current project
in the design decision view. Actions are available for browsing through design
decisions, creating new, or modifying existing decisions.

Fig. 12. Design Decision view and validation results

The right-hand side of Fig. 12 shows a dialog as the result of a consistency
check of the bindings between the design decisions shown on the left and the
design model on the right. The dialog shows the same two violations from the
example in Sect. 4.3 with their severity (error and warning) and a description.
The affected design model elements are also marked in the graphical editor.

6 Related Work

There are many tools for documenting decisions and capturing architectural
knowledge. None of the existing research prototypes and commercial tools pro-
vides the integration between design decisions and design models we motivated
and specified in a previous publication [15] and in previous sections of this paper.
Hence, our documentation goal has only been partially met so far; the consis-
tency and reuse goals have not been addressed sufficiently yet.

Documentation Goal. There are several systems and approaches which sup-
port developers in capturing and making decisions during a software develop-
ment process. ADDSS [5], for instance, is a web-based tool to collect and store
architectural knowledge including, but not limited to, architectural decisions.
ADDSS supports after-the-fact decision capturing; the captured information can
be studied retrospectively, for instance on a subsequent project phase or different
project. However, ADDSS does not support a tight, use case-driven design model
integration such as the one we introduced in the previous sections. For instance,
it is not possible to create outcome instances via the modeling tool to record the
rationale behind a design model change while or immediately after performing
the change. To do so, it is required to switch to the decision management tool.

AREL [16] is another system for the documentation of architectural decisions
based on their rationale. It specifies a UML profile for modeling architectural
design decision rationale and traces them back to the architectural elements;
a single tool can be used to work with UML design models and with design
decisions. However, AREL does not allow the user to capture and reuse changes
in the design models, and to synchronize this information with decision decisions
on the fly; these two artifacts merely coexist in the tool.

The Architectural Decision Knowledge Web Tool (formerly known as Archi-
tectural Decision Knowledge Wiki) [11], which we extended in our prototype,
allows architects to capture, store, and share design rationale. Its base version
supports the user in making and reusing decisions but does not integrate de-
sign decisions with design models. This support is provided by the prototype
described in Sect. 5.

Other tools [17, 18] have similar characteristics as the ones discussed so far.

Consistency Goal. The consistency goal is not met by any of the existing
research prototypes; ensuring consistency remains a manual task. In practice,
informal, human-centric techniques such as coaching, architectural templates,
and code reviews dominate. For instance, software engineering processes like
RUP [19] advise architects to enforce decisions by refining the design in small
and therefore actionable increments. The agile community emphasizes the im-
portance of face-to-face communication and team empowerment [20]. Maturity
models such as the Capability Maturity Model Integration4 recommend rigid
approaches to ensure that decision outcome materializes, e.g., formal reviews.
Applying these techniques takes time and their success depends on the archi-
tects’ coding and leadership skills.

We are not aware of any model-based software development tools that re-
spect design decisions. OpenArchitectureWare5 is a framework for model-driven
development allowing the developer to define and use model transformations.
However, architectural decisions are not a genuine modeling concept in Open-
ArchitectureWare. Modeling tools like the IBM Rational Software Modeler6 and
Borland Together7 provide pattern authoring capabilities which are similar to
the intention of the realizations of design decisions. However, a metamodel for ex-
pressing relations between them as well as tool supported guidance, i.e. proposing
subsequent patterns, is missing. Other commercial modeling tools allow the user
to make simple decisions, for instance regarding model element naming, but use
fixed defaults for architectural concerns, e.g. system transaction management
boundaries [21]. Consequently, development resources have to be invested to
change the defaults to the settings required in a particular application design
and implementation.

4 Available at: http://www.sei.cmu.edu/cmmi/
5 Available at: http://www.openarchitectureware.org
6 Available at: http://www.ibm.com/software/awdtools/modeler/swmodeler/
7 Available at: http://www.borland.com/us/products/together/

Design Decision Reuse Goal. In the past, the design decision rationale and
architectural knowledge communities have focused on documenting decisions
that have already been made (following a retrospective, after-the-fact decision
capturing approach). As a consequence, there is no notion of reusing knowledge
about decisions required (i.e., issues and alternatives); few concepts exist for
bringing required decisions into the original design process or into the model-
driven development transformation chain. For instance, ADDSS and AREL do
not support a reuse strategy which automatically updates the design models
according to a decision made. In our previous work, we have developed a frame-
work for architectural decision modeling with reuse which includes an explicit
decision enforcement step [6]. The integration concepts introduced in this paper
provide an advanced, partially automated form of decision enforcement for the
framework.

7 Conclusion and Future Work

In this paper, we presented concepts for connecting design models in model-based
software development with semi-formal design knowledge (design decisions) to
automate tedious and error-prone, recurring work. The proposed concepts make
use of existing technologies (decision management systems and model differ-
ences) and introduce a formal binding between design models, design decisions,
and model differences. We defined three goals for our contributions: easier doc-
umentation is achieved by exploiting the binding and showing the information
in an additional view; consistency checking is achieved by validating formal con-
straints on bindings; reuse of design decisions is partially automated by attaching
design model changes to solutions of design issues.

The concepts are implemented in a prototype8 and its technical feasibility is
proven with a case study [7]. Decision reuse has been validated in our previous
work [6, 21]. Moreover, we evaluated reuse of model differences with all 23 design
patterns from [4] and 25 refactorings from [22] (the other refactorings are not
applicable to UML models): 8 design patterns and 14 refactorings are generically
applicable right away. Although the other 15 design patterns are also applicable,
they rather produce a draft which must be adjusted. The other 11 refactorings
are not applicable generically because the current prototype only allows to reuse
precisely those realizations which have been made before. In other words, if the
design model does not contain the context specified in the model differences,
that particular realization cannot be used. Work in progress is a generaliza-
tion of model differences which aims to overcome this problem. Moreover, we
demonstrated the prototype to leading software architects and developers of a
commercial modeling platform. An evaluation on a real project is in preparation.

Future work includes to improve the presentation of the consistency check
results and to exploit causal relations between design decisions to propose sub-
sequent decisions—e.g. via the relation induces in Fig. 1.

8 Information about the prototype is available at http://imm.dtu.dk/~pk/decisions

References

1. Object Management Group: UML Superstructure, V2.2 (November 2007)
2. Object Management Group: MDA Guide V1.0.1 (June 2003)
3. Nowak, M., Pautasso, C., Zimmermann, O.: Architectural Decision Modeling with

Reuse: Challenges and Opportunities. In: 5th SHARK, South Africa (May 2010)
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (January 1995)
5. Capilla, R., Nava, F., Duenas, J.C.: Modeling and Documenting the Evolution

of Architectural Design Decisions. In: 2nd SHARK-ADI, Minneapolis, USA, pp.
9–15. IEEE Computer Society (May 2007)

6. Zimmermann, O.: An Architectural Decision Modeling Framework for Service-
Oriented Architecture Design. Dissertation, University of Stuttgart (2009)

7. Könemann, P.: Integrating a Design Decision Management System with a UML
Modeling Tool. IMM-Technical Report-2009-07, Technical University of Denmark
(April 2009)

8. Object Management Group: MOF Core Specification, Version 2.0 (January 2006)
9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley

(November 2002)
10. Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural Design Decision: Ex-

isting Models and Tools. In: WICSA/ECSA Working Session, IEEE Computer
Society (September 2009)

11. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. In: QoSA,
LNCS 4880, pp. 15–32, Springer (July 2007)

12. Förtsch, S., Westfechtel, B.: Differencing and Merging of Software Diagrams–State
of the Art and Challenges. In: ICSOFT, Setubal, Portugal, pp. 90–99 (July 2007)

13. Könemann, P.: Model-independent Differences. In: ICSE Workshop on Comparison
and Versioning of Software Models, pp. 37–42, IEEE Computer Society (May 2009)

14. Object Management Group: OCL Specification, Version 2.0 (May 2006)
15. Könemann, P.: Integrating Decision Management with UML Modeling Concepts

and Tools. In: WICSA/ECSA Working Session, IEEE Computer Society (Septem-
ber 2009)

16. Tang, A., Jin, Y., Han, J.: A Rationale-based Architecture Model for Design Trace-
ability and Reasoning. Journal of Systems and Software 80(6), pp. 918–934 (June
2007)

17. Bachmann, F., Merson, P.: Experience Using the Web-Based Tool Wiki for Ar-
chitecture Documentation. Technical Report CMU/SEI-2005-TN-041, Carnegie
Mellon University, Software Engineering Institute (September 2005)

18. Liang, P., Jansen, A., Avgeriou, P.: Knowledge Architect: A Tool Suite for Manag-
ing Software Architecture Knowledge. Technical Report RUG-SEARCH-09-L01,
University of Groningen (February 2009)

19. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
(2003)

20. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(1999)

21. Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural Decisions and
Patterns for Transactional Workflows in SOA. In: ICSOC, pp. 81–93, Springer-
Verlag (July 2007)

22. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley (June 1999)

