Continuous Process Model Refinement from Business Vision
to Event Simulation and Software Automation

Bridging Gaps between Stakeholder Communities, Practices, Notations, and Tools

Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland
(OST), Rapperswil, Switzerland
olaf.zimmermann@ost.ch

Mirko Stocker
University of Applied Sciences of Eastern Switzerland
(OST), Rapperswil, Switzerland
mirko.stocker@ost.ch

ABSTRACT

Business consultants and software engineers produce and consume
process models capturing analysis and design results on different
levels of abstraction and at different stages of refinement. Model
types commonly found in practice include vision models (current,
future), simulation models, and automation models. In this paper,
we propose to align and map the terminologies and concepts of
these model types to improve stakeholder collaboration. We sup-
port this concept mapping with two model transformations to and
from discrete event simulation models. We implemented these trans-
formations prototypically (MDSL2JaamSim, JaamSim2MDSL). Our
work originates from an industrial case in the FinTech domain. An
experimental validation suggests benefits such as effort savings.

CCS CONCEPTS

- Software and its engineering — System description lan-
guages; Integration frameworks; System modeling languages;
Orchestration languages.

KEYWORDS

Business process modeling, discrete event simulation, domain-specific
languages, model-driven software engineering, software architec-
ture, API design, enterprise application integration

ACM Reference Format:

Olaf Zimmermann, Katharina Luban, Mirko Stocker, and Giuliano Bernard.
2022. Continuous Process Model Refinement from Business Vision

to Event Simulation and Software Automation: Bridging Gaps between
Stakeholder Communities, Practices, Notations, and Tools. In 5th Interna-
tional Workshop on Software-intensive Business: Towards Sustainable Software
Business (IWSiB’22), May 18, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3524614.3528631

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/3524614.3528631

Katharina Luban
University of Applied Sciences of Eastern Switzerland
(OST), Rapperswil, Switzerland
katharina.luban@ost.ch

Giuliano Bernard
University of Applied Sciences of Eastern Switzerland
(OST), Rapperswil, Switzerland
giuliano.bernard@ost.ch

1 INTRODUCTION

Business domain analysts, simulation specialists, and software ar-
chitects create process models to capture domain insights, help
advance designs, and communicate analysis and design results
among various stakeholders from different communities. When
modeling as-is and to-be processes, the different roles ask similar
questions, e.g., about parallel and alternative flow steps as well
as data input and output. The motivation behind these questions
differs by stakeholder role: Business analysts and event simulation
specialists want to model how enterprises operate; they are inter-
ested in the impact of system changes on resource consumption
and key performance indicators. Application architects want to
analyze and design how business processes can be automated in
software fully or partially; integration architects and specialists are
concerned about interoperable and guaranteed message delivery
between systems.

The stakeholder communities use different terminologies; many
competing practices and notations exist. As a consequence, collabo-
ration is tedious. Answering process design questions and aligning
models created by stakeholders in different roles is manual, partially
repetitive and error-prone work. To the best of our knowledge, tools
to transform higher-level business process models (which we call
vision models) to simulation models do not exist; the simulation
models are usually not used as direct input to software requirements
engineering or process automation either.

In this paper, we first review common process modeling practices
of business and software stakeholders. Next, we propose a concep-
tual mapping allowing to advance and refine process models from
early stages (in our case, vision models capturing event storming
workshop results) to discrete event simulation models and then on
to software component interface and flow descriptions (which we
call automation models). Our research contributions are:

(a) A mapping of common concepts in business process model-
ing, event simulation, and software automation.

(b) A Domain-Specific Language (DSL) for vision models.

(c) A realization of the mapping in two transformations.

Our empirical research is motivated by an industry collaboration
with a FinTech startup. The proposed transformations are imple-
mented in an open source prototype. They are part of a toolchain
featuring the online whiteboard miro, the event simulation package

https://doi.org/10.1145/3524614.3528631
https://doi.org/10.1145/3524614.3528631
https://miro.com/online-whiteboard/

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

JaamSim, and tools for the emerging Microservice Domain-Specific
Language (MDSL). We validated our research contributions by ap-
plying the transformations in action research. We also conducted
a controlled self experiment. The mapping from vision model to
simulation model is feasible; it can save repetitive modeling effort
and improve collaboration. The proposed concepts and open source
tools have the potential to close the loop en route to a continuous
process model refinement practice.

The remainder of this paper is structured in the following way.
Section 2 provides background information on discrete event simu-
lation and the use of process models in software engineering and
system integration. Section 3 identifies the commonalities in the
concepts and terminology used by these stakeholder groups and
proposes a mapping for the shared parts. It also presents the im-
plementation of two tool prototypes implementing the mapping
in both directions. Section 4 validates and discusses the results.
Section 5 summarizes and concludes.

2 BACKGROUND AND RELATED WORK

Software-intensive enterprises change their business models fre-
quently, for instance, in response to market changes. As a conse-
quence, their software systems have to be updated as well. This
requires engineering artifacts on different levels of abstraction and
refinement to be adapted continuously as the business models and
the software evolve. For example, sales and fulfillment activities
might be expressed as business process models that are first sketched,
then designed in detail, and finally made executable. Such models
are created for different purposes by different stakeholders. They
may serve as a mere documentation and visualization of business
procedures, but might also be leveraged to simulate business oper-
ations in an event-driven fashion. In the software engineering and
application integration, process models may support system decom-
position, API design and test, or runtime workflow management.
The stakeholders involved in these activities are rather diverse in
terms of their educational backgrounds, skills, preferred notations,
and tools. If they are not connected well, cross-role analysis and de-
sign work become inefficient. For instance, key stakeholders might
receive and reply to the same questions multiple times, leading to
redundant and/or possibly inconsistent results. E.g., multiple ver-
sions of the same sales or fulfillment processes might be modeled,
each supporting one stakeholder view. Let us take a closer look at
two of these stakeholder communities and their practices now.

2.1 Solving Industrial Optimization Problems
with Discrete Event Simulation Models

Discrete event simulation (or Discrete Event-oriented Simulation,
DES) has been practised for more than twenty years. In DES, system
conditions and values change abruptly at discrete points in time
due to certain random events. DES can therefore be defined as an
interacting set of entities that evolve through different states as
internal or external events happen [Robinson 2004].

DES models produce a valid representation of a real-world sys-
tem that takes the inherent uncertainty and dynamics of the system
into account. This is especially useful when the abundance and
random distribution of variants and sequences of actions makes the
real-world system so complex that the problem cannot be solved

satisfactorily by analytical and numerical methods. [Liao et al. 2021]
and [Gorecki et al. 2020] for example describe the usage of DES in
global production networks and smart production systems. DES
can also analyse systems that do not exist yet, such as new con-
structions or even new business ecosystems. [Evans et al. 2017]
point out that simulation can be used "to identify value flows and
exchanges, which could reveal opportunities for business model
innovations and de-risk experimentation". Thus, DES provides a
chance to model economic systems. These systems can be macroe-
conomic systems such as a national economy or microeconomic
systems that include one company or business plan. More recently,
DES also has been used to support investment decisions and busi-
ness plan development for startups [Innosuisse 2020].

Simulation models essentially are evaluation models: A single
run of a stochastic simulation model obtained for a particular set of
parameters provides a sample of target values. Multiple runs thus
generate multiple samples sketching a range of possible outcomes.
[Baden-Fuller and Morgan 2010] and [Robinson 2004] recommend
so-called "what-if questions" to derive appropriate "sets of param-
eters”, such as "what if we increase the production capacity and
extend the service interval?" or "what if the demand doubles and
we add another shift?".

It is particularly promising to use simulation models in the field
of optimization. The objective of optimization is to successively
modify certain input parameters of the model so that improved
target values are obtained. One of many exemplary applications is
defining an optimal lot size and shift model depending on produc-
tion capacities, considering volatile demand and service time. The
optimization approach entails that a simulation model is evaluated
for many parameter combinations. Improved model runtimes mas-
sively reduced the computing time in such applications, which is
another reason for the increasing popularity of DES and its spread-
ing to the environment of small and medium-sized enterprises.

Methods support systematic and repeatable model creation. For
instance, [Swisher et al. 2000] define sim-opt as a “structured ap-
proach to determine optimal input parameter values, where optimal
is measured by a function of output variables ... associated with
a simulation model”. As can be seen in Figure 1, the sim-opt pro-
cess uses the output values (3) from several simulation runs (2)
to evaluate the performance of a certain set of parameters (1). An
adjustment and optimization procedure (4) combines the results
and past ones to decide upon a new set of input values (1).

[Andradottir 2006] analysed classes of optimization algorithms
to decide on what set of parameters should be sampled in the next
iteration of a sim-opt process, and she provides a discussion as to
when random search methods (sim-heuristics) converge with near
certainty to a globally optimal system design. One of the keys to
sim-heuristics is a good understanding of the inter-dependencies of
the system. In an industrial or business context, this understanding
can only be developed when simulation experts work very closely
with business and process owners.

Typically, in a first step, the goals of the simulation have to be
agreed on by understanding the business context and by defining
issues or questions that the simulation is meant to answer. The
next — and arguably most interactive — step is to understand the
overall system with its process flow steps and relevant interac-
tions. It is necessary to identify relevant input data and determine

https://jaamsim.com/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/

Continuous Process Model Refinement from Business Vision
to Event Simulation and Software Automation

4, 1.

Adapt Model / Set Input
Parameter Parameters
Simulation
Model

3. 2.

Sample Output Run
Values Model

Figure 1: Sim-Opt Process (own presentment)

whether these parameters are fixed or variable. To guarantee a
target-oriented output, appropriate sets of parameters are defined
at this stage, e.g., with the help of what-if questions (as explained
above). Practices applied to gain the necessary insights are inter-
views and workshops, data analyses, and questionnaires. A common
technique that may create data-driven workflow visualizations is
business process modeling. The resulting process models provide
end-to-end views of the business process that help organizations
document workflows, surface key metrics, and pinpoint potential
problems. We call these models vision models in this paper because
they may represent a desired future state of operations. They may
also capture the currently implemented business processes.

Many different business process modeling notations are available.
A common choice is the Business Process Management Notation
(BPMN), supported by various tools [Object Management Group
2011; Ruecker 2021].

Based on an agreed vision model, an initial simulation model can
be created. This is done directly in one of the many existing simu-
lation tools. One of these DES tools is JaamSim [King and Harrison
2013], an open source software that provides an API and creates
a configuration file for the model that is human- and machine-
readable. Moreover, due to its open source character, JamSim offers
the possibility to extend existing or design new model element
types, which can satisfy a variety of needs that exceed the capabili-
ties of the standard tool.

When creating a simulation model for a particular DES tool,
the process logic of previously defined models have to be followed.
Furthermore, simulation-specific model elements of the chosen DES
tool have to be added (for instance, statistics collectors, logger and
output viewers). Although many tools assist in creating the models
with drag-and-drop and copy-paste functions, the modeling can
be a tedious, sometimes repetitive manual task not creating direct
value when transferring input models manually. This transfer may
introduce errors causing models to be incorrect, which will degrade
the quality of the simulation output.

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

Once the model has been drafted in the simulation tool, it is
validated by test runs. In practice, is is often not feasible to prove
that a model is valid for its target domain as a whole [Sargent 2010].
As a result, modifications of the model might be required.

If it is considered unnecessary to adapt both the underlying busi-
ness process model and the simulation model, the painstakingly
developed business process model might lose importance and fi-
nally become outdated. That by itself would not be a problem if
the simulation process and the sim-opt process were unidirectional
processes. However, the physical world and market dynamics are
volatile and continuously changing nowadays, and so are the busi-
ness needs. Moreover, insights from optimization processes might
lead to adapted views. The language to communicate with the users
of simulation results is still the business process model (or model),
which by then has been superseded and needs a lot of - tedious
and error-prone - updating.

As a consequence of the above considerations, an automated in-
terface between high-level business process models and simulation
models will be greatly appreciated. Such an interface — as shown
in the center of Figure 2 — promises to save time and cost and to
reduce the risk exposure caused by manual work.

2.2 Business Processes and Simulation Models
in Application and Integration Design

Software architects and system integrators often create models rep-
resenting static structures and dynamic interactions of systems and
their parts. Component walkthroughs and service orchestrations
are two examples of such software automation models that capture
runtime behavior. BPMN, UML activity and sequence diagrams,
and Domain-Specific Languages (DSLs) are among the notations
commonly used in practice; a number of techniques to craft such
models are applied in industry. Event storming workshops [Bran-
dolini 2021] are a recent addition to this toolbox, which already
contains event-driven process chains, behavior-driven development,
object-oriented analysis and design, and various agile engineering
practices [Zimmermann and Stocker 2021].

Some enterprise applications include workflow engines with
explicit "Process Managers" [Hohpe and Woolf 2003] executing
BPMN models (or supporting other languages); an example is Ter-
ravis [Libke and van Lessen 2016]. Even if no workflow engine
is used, business-level process models provide valuable input for
software architects. For instance, domain model elements and in-
formation about external systems that have to be integrated may
be found in such models. Volume metrics that help establish quality
goals regarding performance and availability can be elicited, and
the development of test cases benefits from information about vari-
ability, edge cases, and error situations. If such information does
not appear verbatim in the models or accompanying text notes, the
model content can still help frame related questions to business
stakeholders and domain experts.

The simulation models used to solve industrial optimization
problems (see Section 2.1) can be particularly valuable according
to experience recently gained in action research on a joint indus-
try collaboration project [Innosuisse 2020], introduced in the next
section. Both the control flow in these models, but also the input
parameters and target values used in the sim-opt process (Figure

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

Harmonization of Process Understanding

Incremental and Iterative Refinement

-

0 Business Domain Analysis
Requirements Engineering
(Analysis Models)

PR —

i Partially ™,
{automated >
{ transition

Software Engineering
Systems Integration
(Automation Model)

n
8 Business Process Modeling :v',:,:'s';:, Discrete Event Simulation Simulation Optimization
§ (Vision Model) (DES) Model Sim-Opt Process
&
g MDSL2JaamSim JaamSim2MDSL
8
13
z Continuous Automation Support Continuous
ﬁ Collaboration (Model Transformations) Refinement
&
=
g
-
(©
=

Development and Test
Delivery and Operations
(Executable Workflow)

G
(4

-/

Feedback

Legend: _/
Business Level Amvn.ﬂes and
Artifacts

Software Level Activities and
(Multiple Viewpoints) Arifacts

Paper Contributions

Figure 2: Conceptual Overview: Continuous Process Model Refinement on Business and Software Engineering Level

1) can drive API designs and justify architectural decisions about
service design and pattern selection [Zimmermann et al. 2020].

In a fulfillment and logistics business scenario, the architects
of a new warehouse management and logistics planning system
might inspect the business-level process models to learn about the
items (amount, size, other properties) stored in a warehouse and the
working hours of staff, to request information about the interface
of an external enterprise resource planning system, and to analyze
error cases such as "empty warehouse, full order backlog". They also
may find information about the transaction rates at which items
are delivered and replenished. Business rules subject to auditing
such as "no invoice without a shipment, no refund without return
of goods" may also become apparent in process models.

2.3 Sample Case: Wearables as Payment Devices

Our collaboration partner from the FinTech industry provides order
fulfillment services for wearables such as wrist bands that carry
payment tokens (for instance, those corresponding to credit cards).
Supply chain configuration is key to make the business profitable.
There are many options to design the supply chain, warehouse
management, and shipment activities. These options (e.g., for or-
der management, inbound logistics, handling, and packaging) are
modelled and simulated. Automation software controls the process
execution at runtime, integrating third parties such as banks and
credit card providers. On the joint project [Innosuisse 2020], vision
models were captured in event-command chains and BPMN; more
detailed BPMN models were used to configure the simulations in
the DES package JaamSim. MDSL was used for API design in partial
process automation. While overlapping in scope, these three types
of models were created manually and independently.

2.4 Deficits and Resulting Research Problems

In the current state of the art and the practice, vision, simulation,
and automation models as introduced in Sections 2.1 and 2.2 are
not connected well, although they represent the same processes.
Even if a standard notation such as Business Process Management
Notation (BPMN) and the same modeling tools are used for editing
and viewing, the resulting models might not be shared or might be
unintelligible for the other stakeholder role. Such ambiguities might
be viewed as an opportunity to improvise and innovate, but also as
a threat causing unnecessary workload and misunderstandings.

According to our experience, one root cause is a missing ter-
minology alignment. For example, terms such as process model,
parameter, split/branch, entity, etc. mean different things to busi-
ness analysts, event simulation specialists, and software architects.
If performed at all, transforming process models of different types
is tedious and error-prone; full or partial automation is missing.

To overcome the outlined practical collaboration and modeling
problems, the following questions have to be answered:

(1) How do the process modeling concepts and notations used by
the business analysis and event simulation communities and
the software engineering and system integration communities
relate and compare to each other? Do they overlap?

(2) Is it possible to map the related and overlapping process mod-
eling concepts for business vision analysis, discrete event simu-
lation, and software automation?

(3) Can the conceptual mapping be implemented in model transfor-
mations to support partial automation in a continuous business
process model refinement practice?

Our answers to these three questions form the research contri-
butions of this paper; they will be provided in Section 3.

Continuous Process Model Refinement from Business Vision
to Event Simulation and Software Automation

2.5 Related Work

A 2014 survey reported that "design models are not used very ex-
tensively in industry, and where they are used, the use is informal
and without tool support” [Gorschek et al. 2014]; the report mainly
focused on UML. As of 2020, modelling in general is reported to be
adopted in practice in certain domains, usage scenarios, and devel-
opment styles; examples include informal modeling, low-code soft-
ware development, and model-based engineering of cyber-physical
systems [Bucchiarone et al. 2021]. Note that our work concerns
both (requirements) analysis and (software) design models, those
capturing behavior and systems dynamics in particular.

To the best of our knowledge, a connection or interfaces between
business vision models, event simulation models, and process au-
tomation models have not been investigated in depth yet; we did not
find any model mappings or transformation tools in the literature.
"Model Continuity in Discrete Event Simulation: A Framework for
Model-Driven Development of Simulation Models" [Cetinkaya et al.
2015] has similar goals but focuses on the engineering process as
such. [Yigit and Ulsoy 1989] emphasises the importance of dynamic
models in a particular domain but does not cover business analysis
(or vision) model transformations. [Hlupic and Robinson 1998] from
1998 comes closest to our work and shares our vision but stops at
using simulation to evaluate and compare business processes; it
does not propose model mappings or transformations either.

3 RESEARCH CONTRIBUTIONS

Figure 2 illustrates our proposal to align the process modeling prac-
tices on the business level and the software engineering level for
their mutual benefit and to support the stakeholder collaboration
with two model transformations. The third contribution of this pa-
per is a new DSL for vision models (as transformation input/output).

3.1 Alignment of Process Modelling Concepts

As discussed in Section 2, a) DES and b) software engineering
share a high-level goal of satisfying stakeholders. They do so in
different ways, a) with expressive, useful simulation results that can
support business decisions effectively and b) by delivering working
software that fulfills its business and quality requirements. To reach
these goals, both communities have to understand how a business
operates today and wants to operate in the future. In software
engineering, this falls under requirements elicitation.

Our sample case suggests that the business process and simula-
tion models are indeed valuable for software engineering, even if
created for a different purpose. Under this premise, transferring the
models means manual copy-paste or rework; we are unaware of
any practice or tool that would bridge the model gap in the current
state of the art (see coverage of related work in Section 2.5).

In sprint meetings and retrospectives of the collaboration project
outlined in Section 2.3, we developed the terminology comparison
and mapping shown in Table 1. The table includes those parts of
the terminology alignment we found to be required to map and
transform vision, simulation, and automation models.

The first column primarily lists primitive "Workflow Patterns”
[Russell et al. 2016]. The second column refers to BPMN terms. In
the third column, general concepts from programming are used,
as well as selected Domain-Driven Design (DDD) patterns such as

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

"Value Object" [Evans 2003]; DTO stands for "Data Transfer Object”
[Zimmermann and Stocker 2021]. Application integration terms
such as "Pipes-and-Filters" and "Message" come from the pattern
language "Enterprise Integration Patterns" [Hohpe and Woolf 2003].

Note that we do not claim that all concepts are semantically
identical; some of them correspond to each other rather loosely
because they have similar goals in their respective user community.

3.2 A DSL for Business Vision Models

A gray literature review of event storming practices led to previous
work on a modeling tutorial.! Usually created on real or virtual
whiteboards collaboratively, event stormings capture the "what
happens when" of a business vision in the form of connected events,
commands, artifacts and other, optional concepts [Brandolini 2021].

Only a small subset of the process modeling concepts found in
BPMN is adequate in such event-driven vision models. The fol-
lowing example therefore proposes an alternative, novel syntax to
capture the result of an exemplary event storming:

flow ParallelSplitWithSynchronization
event FlowInitiated triggers command FlowStepl
command FlowStepl emits event FlowSteplCompleted
event FlowStepl1Completed
triggers command FlowStep2 + FlowStep3
command FlowStep2 emits event FlowStep2Completed
command FlowStep3 emits event FlowStep3Completed
event FlowStep2Completed + FlowStep3Completed
trigger command FlowStep4
command FlowStep4 emits event FlowTerminated

The above flow DSL originates from the domain-driven design
tool Context Mapper [Kapferer and Zimmermann 2020] and was
revised and adopted for inclusion in MDSL here. Flow DSL and its
tools were validated with a set of comprehensive test cases based
on workflow pattern primitives from the literature and a translation
to BPMN. Feedback from BPMN experts in industry was solicited
and incorporated.

3.3 Transformations to/from Simulation Models

We used the conceptual mapping from Section 3.1 to implement
mappings between two exemplary notations, Microservice Domain-
Specific Language (MDSL) flows as featured in Section 3.2 and the
JaamSim configuration format (see Section 2.1 for a brief introduc-
tion to JaamSim). These transformations are shown in Figure 2.
Table 2 specifies the mapping implemented in the first one, which
is called MDSL2JaamSim.2. MDSL commands become JaamSim
servers, and events are mapped to queues. Composite control flow
steps (and/or) are translated into Duplicates and Branches, respec-
tively; join events are mapped to Combines. There is one SimEntity
per flow; events and command without a predecessor become Entity
Generators, and termination events turn into Entity Sinks (note: all

!available at https://contextmapper.org/docs/event-storming/

2We created MDSL in previous work to be able to specify service contracts, their data
representations, and API endpoints in technology- and platform-independent ways (but
providing bindings to contemporary technologies and languages, e.g. OpenAPI/HTTP
and ProtocolBuffers/gRPC) [Kapferer and Zimmermann 2020]. MDSL tools (e.g., editor,
linter, generators) exist, using Java, Eclipse, and the Xtext framework for DSLs. MDSL
and its tools are developed and maintained in an open source project maintained at
GitHub: https://microservice-api-patterns.github.io/MDSL-Specification/

https://contextmapper.org/docs/event-storming/
https://microservice-api-patterns.github.io/MDSL-Specification/

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

Table 1: Process Modeling on the Business Level (Analysis, Design) and in Software Engineering/Application Integration

Process Modeling Concept

BPMN (and other notations)

Automation Models (Prog., Workflow Mgmt., EAI)

Process description
Unit of work (atomic)
Partitioning, containers

Process model, process map
Activity, task, step
Pool, swimlane, subprocess

Workflow, integration flow
Statement, filter (in Pipes-and-Filters messaging)
Aggregate [Evans 2003], component, service, module

Parallel split

Parallel Gateway (AND)

Fork, Recipient List [Hohpe and Woolf 2003]

Inclusive choice
Exclusive choice
Simple Merge Join

Inclusive Choice Gateway (OR)
Exclusive Choice Gateway (XOR)

Content-Based Router [Hohpe and Woolf 2003]
Content-Based Router (with exclusive selector)
Aggregator [Hohpe and Woolf 2003]

External stimulus/configuration data
In flight data
Result data

Input parameter
Event
Target output

In parameters, request Messages
Value Object, DTO, Document/Command Message
Out parameters, reply queues

Process start Start event

Process end

Termination event, stop event

main methods, Message Construction
return, Message Consumption (in endpoint)

Asynchronous communication

e.g., messages, signals, thresholds

Signals, interrupts, Event Messages [Hohpe and Woolf 2003]

Table 2: Mapping between Vision Models (here: CML, MDSL) and Simulation Models (here: JaamSim)

Process Modeling Concept | Event Storming Output/Vision Models (CML, MDSL) | DES Model (JaamSim Configuration)
Process Flow Configuration with one SimEntity
Start Initial events and commands EntityGenerator
Unit of work (active) Command Server
Unit of work (passive) Event Queue
Parallel split and operator for commands and events (+) Duplicate
Choice (inclusive, exclusive) or/xor operators for commands and events (o, x) Branch
Merge Join event (on left side of flow step) Combine (constrained semantics)
End Termination events and commands EntitySink

terms in upper case are JaamSim-specific incarnations of general
BPM and DES concepts). Figure 3 shows parts of the generated
model in the graphical user interface of JaamSim; the full output is
available in the GitHub repository of MDSL.

A second transformation JaamSim2MDSL is implemented in
plain Java (using the JaamSim API and an MDSL API). It inspects
process flow elements in the JaamSim configuration file (e.g., Servers,
Queues, Branches, Duplicates) and derives candidate API endpoints
with data type definitions for request and response messages from
them. In our example, an excerpt from the MDSL output is:

API description MDSLToJaamSimPaperExampleContract
data type FlowStepl1DTO "placeholder":D<string>

endpoint type MDSLToJaamSimPaperExampleEndpoint
supports flow FlowTest2
serves as PROCESSING_RESOURCE

exposes

operation runFlowStepl
with responsibility STATE_TRANSITION_OPERATION
expecting payload "changeRequest":FlowStep1DTO
delivering payload "updateResult":FlowStep1DTO
transitions from "anyState" to "FlowSteplFinished"
emitting event FlowStepl1Completed

// also: runFlowStep2, runFlowStep3, runFlowStep4
operation calculateFlowTerminated

with responsibility COMPUTATION_FUNCTION

expecting payload "flowEntitities":ID<int>+

delivering payload "flowTerminatedData"
receives event FlowInitiated

The code snippet features the part of MDSL that allows API
designers to specify endpoint types with operations, including the
payload of request and response messages as well as events and state
transitions. Here, only two operations are shown, one representing
the first flow step (which may be triggered by an external API call)
and one representing the computation of simulation results. Steps 2
to 4 in the vision model input and the simulation model generated
by MDSL2JaamSim (see Figure 3) are not shown; they look similar.

Data types and an endpoint type representing the simulation
entities (exposing create, read, update, and delete operations) are
also generated, but not shown. Due to space constraints, we do not
describe this second implementation in detail here; source code and
output MDSL are available in the MDSL repository [MDSL 2022].

API specifications such as the above MDSL snippet can jump
start the implementation of complete automation workflows and/or
individual flow steps, for instance in HTTP Web APIs.

4 VALIDATION AND DISCUSSION

Conceptual mapping and implementation for MDSL and JaamSim
were developed in three iterations: proof-of-concept demonstrator,
Minimum Viable Product (MVP), and open source release.

Continuous Process Model Refinement from Business Vision
to Event Simulation and Software Automation

1)

Simulation process model for FlowTest2

e & &2

FlowStep1 CampletédGuardservar FlowStep1 Flox&stapz“m,

N 2

FloWStep3

AND_FlowStep2_|

) Flowstep2Comy

FlowInitiated FlowSteplCompleted FlowStep28plitQueue

3)

Key Inputs QOptions Thresholds Maintenance Format Graphics

FlowStep3splitQuene Flos

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

(2)
=~ . Process Flow ~
d SimEntity
- @ ParallelSplitWithSynchronizationSimEntity
d EntityGenerator
- @ FlowlnitiatedEntityGenerator
., EntitySink
- @ ParallelSplitWithSynchronizationEntitySink
Server
& FlowStepl
FlowStep1CompletedGuardServer
& FlowStep2
& FlowStep3
L WFlowStep4
Queue

-

FlowStepd ™.

Duplicate v

(4) (1) Process View (Control Flow)

Keyword Default Value

Match

(2) Model Element Browser

SelectionCondition

NextEntity Norne

OQutput Value
- (3) Input Parameters (by Model
obj null A !
NumberAdded 1048944 Element)
NumberPrecessed 1048944 (4) Output values (by Model Element)
NumberInProgress 0
ProcessingRate 0.0332618 /s| \, lina A7 ravt Tacl

Figure 3: MDSL2JaamSim Output: Configuration of Sample Flow Featuring Workflow Patterns (Selected Views/Model Elements)

The proof of concept had the objective to assess technical feasi-
bility and to solicit early feedback regarding the value, for instance,
for DES practitioners on the FinTech project. The MVP was used to
validate the correct working and usability of the mapping transfor-
mations. The size of the examples grew from a basic "hello world"
scenario to a comprehensive unit test suite covering relevant work-
flow pattern primitives [Russell et al. 2016] to a medium-size vision
model and a large, realistic simulation model from the FinTech case
(see Section 2.3). This validation setup qualifies combines action
research and controlled self experiment to investigate:

Should business process modeling, DES, and software design be
treated as disconnected work streams? Or can vision, simulation, and
automation models be aligned and serve as mutual modeling input?

4.1 Action Research and Controlled Experiment

Two of the authors of this paper not involved in the implementation
validated the MDSL to JaamSim transformation in the MVP version.
These early adopters and testers represent our two stakeholder
groups: one of them is a DES specialist, the other one a software
architect and Web developer. They had not worked with the no-
tations and tools of the other group before. We instructed them
to run through a demo script® and answer survey questions about
concepts implementation, benefits, drawbacks, and practicality of
the approach. The test setup uses a slightly larger example than
presented above.

Having overcome initial setup and installation problems, both
testers succeeded in converting the given event storming output to a
simulation model with MDSL2JaamSim. They could run through all
steps in Figure 2 as instructed, including a model revision. Both of
them were able to trace the mapped concepts back and forth. They
reported some usability issues and limitations in the implementa-
tion (model layout in JaamSim, handling of loops and commands
receiving multiple events). These two issues have been resolved
in the open source version of the tool. Both testers appreciate the

3available at ozimmer.ch/practices/2022/02/01/ProcessOrientedServiceDesignDemo.html

potential to save a significant amount of time in the transformation
from a vision model to a simulation model, but were not able yet
to quantify these envisioned savings.

Reviewing the current mapping implementation, the horizontal
process layout with separate lanes for JaamSim servers, queues,
and control flow gateways can be considered good enough as a
design starting point generated by a tool prototype. Few overlaps of
arrows connecting model elements exist, and the generated model
does not conclude any flow semantics from the deliberately more
vague MDSL input (that represents the results of informal event
storming workshops). During the implementation, it turned out that
the Combine concept in JaamSim does not support simple 1:1 pass
through semantics; hence, it is not suited to express all Aggregator
behavior specified in [Hohpe and Woolf 2003]. For instance, the
aggregation strategy "first best" and aggregation algorithms such
as "condense data" cannot be expressed easily. Additional model
elements such as aggregation queues and servers were required for
that. Furthermore, the rather straightforward mapping from events
to queues and commands to servers is well suited for most cases,
but causes problems for flows with loops and in some edge cases
because in JaamSim servers can only wait for input on one queue
(this is a limitation of the tool, not an issue with DES concepts and
tools in general). Again, additional model elements such as guard
servers and extra queues were required to overcome this semantic
gap. Such mapping problems are rather usual in application integra-
tion, and process modeling tool integration seems no exception in
this regard. In our opinion, such known limitations and intricacies
would be showstoppers for model transformations with other goals
(e.g., those that have to preserve operational semantics and proof
their correctness in all cases) , but this is not the case here.

4.2 Discussion of Results

Our process-centric work differs from other model-driven develop-
ment approaches in that it emphasizes partial automation. Unlike
executable UML, for instance, we do not strive for a substitution of

https://ozimmer.ch/practices/2022/02/01/ProcessOrientedServiceDesignDemo.html

IWSiB 22, May 18, 2022, Pittsburgh, PA, USA

design work; our partial automation turns process models and their
transformations into design guides (or virtual coaches) and discus-
sion catalysts (and sources of inspiration). The transformations also
reduce routine work that is rather dull and error-prone.

As in many modeling tools, model reconciliation, for instance via
automatic reverse transformations, remains an open issue. Semantic
mismatches between the involved metamodels had to be overcome.

Our conceptual solution is not limited to any product or practice,
even if the tool prototype focuses on MDSL and JaamSim. Imple-
menting similar transformations tools would work equally well for
other simulation software, assuming that an API or open model
import/export capabilities exist (API and open configuration file
format are among the reasons we chose JaamSim). The first transfor-
mation uses an Apache Freemarker template, ensuring portability
(to new versions and other tools). The second one only depends on
the APIs provided by the two involved tools; API usage is wrapped
to ensure portability.

5 SUMMARY AND CONCLUSIONS

In this interdisciplinary paper, we aligned business process model-
ing concepts applied in practice. While similar, sometimes identical
notations are used to craft (business) vision models, (event) simula-
tion models, and (software) automation models, the content of such
models differs widely because serve different purposes in analysis
and design on the business and the software level. We implemented
two transformations supporting the model alignment, from vision
models (for which we proposed a new DSL) to simulation models
and from simulation models to automation models.

Aligning terminology can save precious analysis and design time
and relieve key stakeholders because they no longer have to answer
similar questions from business analysts, simulation experts, and
software engineers. Event simulation specialists, software archi-
tects, and system integrators can benefit from the models created by
the other stakeholder groups, when picking them up and transform-
ing them into their realm. Partially automating transformations
improves consistency and stimulates innovation because formerly
disconnected communities are enabled to leverage each other’s
intermediate results We do not aim at full automation here but see
the model mappings and their implementation in transformations
as productivity accelerators and design assistants. Even if no tools
are involved, aligning the process modeling concepts can improve
collaboration and avoid unnecessary repetition in the business
analysis and software design work.

Opportunities for future work are manifold. On the conceptual
mapping level, the data structures and values in the models (in-
cluding simulation parameters and target values, as well as data
transfer objects and database table definitions) could be further
investigated and possibly supported by the automated model trans-
formations. Moreover, API testing and mocking could be supported,
for instance, by offering simulation capabilities in test tools that
leverage generated flow models to analyze the performance impact
of API design refactorings.

Acknowledgments. Former OST staff member Stefan Kapferer de-
signed the flow syntax for the application layer support in Context
Mapper. [Innosuisse 2020] supported the collaboration project case.

REFERENCES

Sigran Andradottir. 2006. Chapter 20 An Overview of Simulation Optimization via
Random Search. In Simulation, Shane G. Henderson and Barry L. Nelson (Eds.).
Handbooks in Operations Research and Management Science, Vol. 13. Elsevier,
617-631. https://doi.org/10.1016/S0927-0507(06)13020-0

Charles Baden-Fuller and Mary S. Morgan. 2010. Business Models as Models. Long
Range Planning 43, 2-3 (2010), 156-171. https://doi.org/10.1016/j.1rp.2010.02.005

Alberto Brandolini. 2021. Introducing EventStorming An act of Deliberate Collective
Learning. LeanPub. https://leanpub.com/introducing_eventstorming

Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio, Matthias
Tichy, Massimo Tisi, Andreas Wortmann, and Vadim Zaytsev. 2021. What Is the
Future of Modeling? IEEE Software 38, 2 (2021), 119-127. https://doi.org/10.1109/
MS.2020.3041522

Deniz Cetinkaya, Alexander Verbraeck, and Mamadou D. Seck. 2015. Model Continuity
in Discrete Event Simulation: A Framework for Model-Driven Development of
Simulation Models. ACM Trans. Model. Comput. Simul. 25, 3, Article 17 (apr 2015),
24 pages. https://doi.org/10.1145/2699714

Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley.

Steve Evans, Doroteya Vladimirova, Maria Holgado, Kirsten van Fossen, Miying Yang,
Elisabete A. Silva, and Claire Y. Barlow. 2017. Business Model Innovation for
Sustainability: Towards a Unified Perspective for Creation of Sustainable Business
Models. Business Strategy and the Environment 26, 5 (2017), 597-608. https:
//doi.org/10.1002/bse.1939

Simon Gorecki, Jalal Possik, Gregory Zacharewicz, Yves Ducq, and Nicolas Perry.
2020. A Multicomponent Distributed Framework for Smart Production System
Modeling and Simulation. Sustainability 12, 17 (2020), 6969. https://doi.org/10.
3390/5u12176969

Tony Gorschek, Ewan Tempero, and Lefteris Angelis. 2014. On the Use of Software
Design Models in Software Development Practice: An Empirical Investigation. 7.
Syst. Softw. 95 (sep 2014), 176-193. https://doi.org/10.1016/].jss.2014.03.082

V. Hlupic and S. Robinson. 1998. Business process modelling and analysis using
discrete-event simulation. In 1998 Winter Simulation Conference. Proceedings (Cat.
No.98CH36274), Vol. 2. 1363-1369 vol.2. https://doi.org/10.1109/WSC.1998.746003

Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

Innosuisse. 2020. From Wearable to Wallet: A Novel Simulation and Automation
Ecosystem for Payment Card Digitization: Project number 39597.1 IP-SBM. https:
//www.aramis.admin.ch/Grunddaten/?ProjectID=47264

Stefan Kapferer and Olaf Zimmermann. 2020. Domain-Driven Service Design. In
Service-Oriented Computing, Schahram Dustdar (Ed.). Springer International Pub-
lishing, Cham, 189-208.

D. H. King and Harvey S. Harrison. 2013. Open-source simulation software “JaamSim”.
In 2013 Winter Simulations Conference (WSC). IEEE, 2163-2171. https://doi.org/10.
1109/WSC.2013.6721593

Shuangqing Liao, Adrian Riiegg, and Roman Hianggi. 2021. Deriving a global pro-
duction network type in times of uncertainty - a simulation based approach. Die
Unternehmung 75,4 (2021), 552-575. https://doi.org/10.5771/0042-059X-2021-4-552

Daniel Litbke and Tammo van Lessen. 2016. Modeling Test Cases in BPMN for Behavior-
Driven Development. IEEE Software 33, 5 (2016), 15-21. https://doi.org/10.1109/
MS.2016.117

MDSL. 2022. Microservice Domain-Specific Language (MDSL) Repository. https:
//github.com/Microservice- API-Patterns/MDSL-Specification

Object Management Group. 2011. Business Process Model and Notation (BPMN):
Version 2.0. https://www.omg.org/spec/BPMN/2.0

Stewart Robinson (Ed.). 2004. Simulation: The practice of model development and use /
Stewart Robinson. Wiley, Chichester.

Bernd Ruecker. 2021. Practical process automation: Orchestration and integration in
microservices and cloud native architectures. O’Reilly, Sebastopol, CA.

Nick Russell, Wil M.P. van der Aalst, and Arthur H. M. ter Hofstede. 2016. Workflow
Patterns: The Definitive Guide. The MIT Press.

Robert G. Sargent. 2010. Verification and validation of simulation models. In Proceedings
of the 2010 Winter Simulation Conference. 166-183. https://doi.org/10.1109/WSC.
2010.5679166

James R. Swisher, Paul D. Hyden, Sheldon H. Jacobson, and Lee W. Schruben. 2000.
Survey of simulation optimization techniques and procedures. Winter Simulation
Conference Proceedings 1 (2000), 119-128.

A.S. Yigit and A.G. Ulsoy. 1989. Controller design for rigid-flexible multibody systems.
In Proceedings of the 28th IEEE Conference on Decision and Control,. 665-673 vol.1.
https://doi.org/10.1109/CDC.1989.70201

Olaf Zimmermann and Mirko Stocker. 2021. Design Practice Reference - Guides and
Templates to Craft Quality Software in Style. LeanPub. https://leanpub.com/dpr

Olaf Zimmermann, Mirko Stocker, Daniel Liibke, Cesare Pautasso, and Uwe Zdun.
2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proc. of the Ist
and 2nd International Conf. on Microservices 2017/2019 (OASIcs, Vol. 78), Luis Cruz-
Filipe et al. (Ed.). Dagstuhl, Germany, 4:1-4:17. https://doi.org/10.4230/OASIcs.
Microservices.2017-2019.4

https://doi.org/10.1016/S0927-0507(06)13020-0
https://doi.org/10.1016/j.lrp.2010.02.005
https://leanpub.com/introducing_eventstorming
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1145/2699714
https://doi.org/10.1002/bse.1939
https://doi.org/10.1002/bse.1939
https://doi.org/10.3390/su12176969
https://doi.org/10.3390/su12176969
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1109/WSC.1998.746003
https://www.aramis.admin.ch/Grunddaten/?ProjectID=47264
https://www.aramis.admin.ch/Grunddaten/?ProjectID=47264
https://doi.org/10.1109/WSC.2013.6721593
https://doi.org/10.1109/WSC.2013.6721593
https://doi.org/10.5771/0042-059X-2021-4-552
https://doi.org/10.1109/MS.2016.117
https://doi.org/10.1109/MS.2016.117
https://github.com/Microservice-API-Patterns/MDSL-Specification
https://github.com/Microservice-API-Patterns/MDSL-Specification
https://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1109/WSC.2010.5679166
https://doi.org/10.1109/WSC.2010.5679166
https://doi.org/10.1109/CDC.1989.70201
https://leanpub.com/dpr
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Solving Industrial Optimization Problems with Discrete Event Simulation Models
	2.2 Business Processes and Simulation Models in Application and Integration Design
	2.3 Sample Case: Wearables as Payment Devices
	2.4 Deficits and Resulting Research Problems
	2.5 Related Work

	3 Research Contributions
	3.1 Alignment of Process Modelling Concepts
	3.2 A DSL for Business Vision Models
	3.3 Transformations to/from Simulation Models

	4 Validation and Discussion
	4.1 Action Research and Controlled Experiment
	4.2 Discussion of Results

	5 Summary and Conclusions
	References

