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{linus.basig,reto.aebersold}@caruhome.com

Abstract. The AgeTech domain poses both opportunities and chal-
lenges for the architects of Internet of Things (IoT) solutions. Key
requirements concern data privacy and cost-efficiency, as well as guaran-
teed, interoperable delivery of event messages from resource-constrained
edge devices to the cloud and consumer applications; public cloud
deployments and asynchronous, queue-based messaging are common
building blocks of such solutions. This experience report features the
conceptual, pattern-oriented design and open source implementation
of a custom-built embeddable event router that natively supports
the CloudEvents specification from the Cloud Native Computing
Foundation. Our CloudEvents Router introduces standardized event
routing targeting the software landscape of the AgeTech startup CARU;
this landscape reaches from an embedded microcontroller to cloud-scale
services running on Amazon Web Services. The report further analyses
the message delivery guarantees given in messaging protocol specifi-
cations and their implementations (for instance, MQTT libraries) and
presents an alternative delivery management approach, implemented
and validated in the open sourced Rust microkernel of the CloudEvents
router. The report concludes with lessons learned about messaging edge
cases and protocol particularities, in MQTT in particular.

Keywords: Asynchronous Messaging · Enterprise Application Integra-
tion · Cloud Native Computing · Internet of Things · Quality of Service
Guarantees

1 Introduction

The AgeTech domain poses both opportunities and challenges for the architects
of Internet of Things (IoT) solutions. Key requirements concern data privacy and
cost-efficiency, as well as guaranteed, cross-platform delivery of event messages
from edge devices to the cloud and applications; asynchronous, queue-based
messaging and public cloud deployments are common building blocks of such
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solutions. CARU AG is a Swiss startup targeting this domain. One of its main
products is a digital flatmate, an IoT device comprising many sensors connected
to Amazon Web Services (AWS) cloud offerings and consumer applications.

This experience report features the domain analysis, design, and implemen-
tation of the content-based CloudEvents Router, whose main design goal is to
provide a unified event plane to route standardized events conveniently and re-
liably over multiple messaging protocols such as Message Queuing Telemetry
Transport (MQTT), Amazon Simple Queue Service (SQS), and Advanced Mes-
sage Queuing Protocol (AMQP). We evaluated existing solutions, but did not
find any solution that can be deployed both to low-power devices and to the
cloud while fitting into the overall software architecture of CARU. Our novel
CloudEvents Router is written in Rust and open sourced under the Apache 2
license.3

The remainder of the paper is structured in the following way: Section 2 in-
troduces architecture design challenges in the AgeTech domain, evidenced and
exemplified in the business model, products, and software architecture of CARU.
Section 3 specifies the CloudEvents router architecture that addresses these chal-
lenges; Section 4 covers reliability and delivery guarantees and their implemen-
tation in Rust and MQTT. Sections 5 and 6 present lessons learned and related
work; Section 7 summarizes and concludes the paper.

2 Business Context: AgeTech Startup with IoT Device

CARU is an AgeTech startup with the mission to help the elderly live indepen-
dently for longer by providing a digital flatmate in the form of an IoT device.
It aims at increasing the safety of its human users by a) allowing these users to
call for help in an emergency, b) facilitating communication with relatives and
caretakers, and c) integrating services that foster a comfortable life at home.

When comparing the CARU Device against traditional social care alarm
systems, its main differentiator is that the alarm call can be triggered by the
embedded voice recognition model. The CARU Device also integrates the rel-
atives into the care process by allowing them to exchange voice messages with
the elderly user via the ”CARU Family Chat” smartphone app. The device is
also equipped with several sensors that support data-driven functionalities like
air-quality monitoring, sleep quality analysis or activity detection that can be
used by professional caretakers to optimize the care they provide.

2.1 Software Architecture Overview

Fig. 1 shows an overview of the current software architecture of CARU. It
consists of four main components: (1) the CARU Device running embedded
Linux, (2) the CARU Cloud backend running on AWS, (3) the myCARU Web
App(lication), and (4) the CARU Family Chat smartphone app. The two apps

3 https://github.com/ce-rust/cerk

https://github.com/ce-rust/cerk
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communicate with the backend over a GraphQL endpoint managed by AWS
AppSync; the MQTT protocol connects the devices and the backend via AWS
IoT Core.

The use of a public cloud such as AWS allows CARU to build upon its
many managed services and therefore minimize the operational burden on their
small DevOps team. AWS IoT Core, in particular, provides many of the building
blocks required to successfully manage an IoT device at scale. This includes
device identity management (e.g., certificate management), connectivity (e.g.,
serverless MQTT broker), remote device configuration, and data management.
AWS AppSync was chosen because it lets CARU run a fully serverless backend
that automatically scales and does not require infrastructure maintenance.

As the CARU Device is a safety-critical device and its users depend on it in
case of a fall or another medical issue, measures are built into the architecture to
reduce the risk of a device going offline. The main challenge is that the device is
deployed in the home of its user and relies on infrastructure outside the control of
CARU. Two factors in particular can cause a device to go offline: power outages
and issues with the mobile network.

To mitigate the risk of a power outage, the CARU Device is equipped with a
battery that allows it to operate normally for a few hours without an active power
supply. The main strategy to reduce the risk of mobile network-related issues
is the use of a roaming SIM that automatically connects to the best network
available at the location of the device. Additionally, the CARU Device is also
able to connect to WiFi networks for added redundancy; that said, most users
of the CARU Device do not have one installed in their home at present.

Because of the uncontrollable environment of the device, strong emphasis is
put on monitoring it from the cloud. If a device goes offline or connectivity issues
are recognized, the relatives or caretakers are alerted immediately and provided
with instructions how to resolve the issue.

Finally, the safety-critical functionality (emergency call) does not depend on
an active Internet connection. The recognition of the keyword to trigger the
emergency call runs on the device, and the call itself can be made over the
2G/GSM mobile network as a fallback. The 2G/GSM network has a better
coverage (at least for now; in Switzerland some providers started to turn it off)
and is able to place calls even if the signal is not strong enough to transport
usable Internet traffic. Important events that are generated while the device is
offline are stored and sent to the cloud as soon as the device comes back online.

2.2 Vision: Unified Event Plane

The remainder of this experience report focuses on two components of the archi-
tecture of CARU: the CARU Device and CARU Cloud (Fig. 1). In the future,
the concepts introduced in this paper could be applied to the other architectural
components as well.

Because the CARU Device can place calls even if the signal quality is too bad
to connect to the Internet, it was decided early on to give the device as much
independence from the cloud as possible. To support this decision and because
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Fig. 1. Architecture Overview of the CARU System Landscape

of the nature of the data that the device produces (i.e., domain events reporting
that something business-relevant has happened), an event-driven architecture
was chosen. This design worked well in the beginning; with a growing number
of events, several issues arose.

Event design and process mismatches. The first issue arose because only
minimal effort was put into the design of the events when CARU started the
development. This was great for iterating fast on the product but caused some
pain when the number of productive devices grew. This pain was amplified be-
cause the events are the only interface between the CARU Device and CARU
Cloud, and these two systems have vastly different deployment cycles: while the
CARU Cloud is developed with a continuous deployment approach, the deploy-
ment cycle of the CARU Device is longer because the cost of each deployment
is significantly higher. The higher cost is caused by the more manual testing
process, the more involved communication with the elderly device users, and the
expensive bandwidth required to bring the update onto the devices.

Routing intricacies. The second issue was that the event routing patterns in
each component turned out to be quite different. Hence, unnecessary friction
occurred when a developer switched from working on one system to another: be-
tween the CARU Device and CARU Cloud, the topic-based subscription mech-
anism of the MQTT protocol was used. To keep the design of the CARU Device
simple, an in-process message bus with type-based event routing distributed the
events. In the CARU Cloud, AWS EventBridge with its content-based subscrip-
tions was responsible for event routing. The mental friction caused by switching
from one component to the other slowed down the development because CARU
has a small DevOps team that often has to work on different systems in parallel.

Adoption of CloudEvents specification to the remedy. To make the
content-based event routing in/with AWS EventBridge more convenient, CARU
introduced CloudEvents as its standardized event format for events exchanged
inside the CARU Cloud. CloudEvents is a specification proposed by the Server-
less Working Group of the Cloud Native Computing Foundation (CNCF)[6].
The goal of the specification is to simplify event declaration and delivery across
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{
"type": "caru.sensor.voice",
"specversion": "1.0",
"source": "crn:eu:::device:wvugxd5t",
"id": "e30dc55b-b872-40dc-b53e-82cddfea454c",
"contenttype": "text/plain",
"data": "help"

}

Listing 1: A CloudEvent in the JSON Serialization Format

services, platforms, and vendors. To achieve this goal, the specification defines
the event fields, different serialization formats, and multiple protocol bindings.
The specification has attracted attention and contributions from major cloud
providers and Software as a Service (SaaS) companies. Listing 1 shows an ex-
ample of a CloudEvent in the JavaScript Object Notation (JSON) format.

The introduction of the CloudEvents event format also helped with the man-
agement and the safe evolution of the events by encouraging strict definition and
versioning of schemas defining the event payload.

The Unified Event Plane. After the successful introduction of CloudEvents
in the CARU Cloud, the vision of a Unified Event Plane emerged. The Unified
Event Plane aims at letting events flow with as little friction as possible between
the different components of the CARU architecture, which was introduced in Sec-
tion 2.1. This should be achieved by introducing the CloudEvents event format
and a content-based event router (CloudEvents Router) in all systems.

Fig. 2. CARU’s Unified Event Plane
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Fig. 2 shows the envisioned Unified Event Plane. Whenever events are ex-
changed, they are formatted according to the CloudEvents specification. CloudE-
vents Router instances appear in the CARU Cloud and the CARU Device sys-
tems. The CloudEvents Routers connect to each other as well as to the different
services of their respective systems. To keep complexity minimal, the CloudE-
vents Routers are stateless and use existing services to handle the event trans-
port: on the device, an embedded Eclipse Mosquitto MQTT Broker has this
duty; in the cloud, Amazon SQS queues are responsible for reliable event de-
livery. This also means that the CloudEvents Routers must be able to route
messages between the protocols supported by these services reliably and in an
interoperable manner. For each CARU Device and CARU Cloud Service, an in-
box and an outbox channel pair are used to communicate with the CloudEvents
Router. In the cloud, this is implemented by an SQS Queue Pair; on the device
and between the device and the cloud, an MQTT Topic Pair is used.

3 Design and Implementation of the CloudEvents Router

This section presents the architecture and implementation of the CloudEvents
Router and shows how the design goals in Section 2.2 are reached. From the
beginning, the project had a focus on a lean and easily extendable architecture
as well as a flexible deployment on IoT devices and in the cloud. Later on, the
router was extended to provide an At Least Once delivery guarantee.

3.1 Technical Constraints and Requirements

Before the decision to design and implement the CloudEvents Router was taken,
we evaluated existing solutions. The following non-functional requirements and
constraints guided the evaluation:

CloudEvents Support. CARU has already invested in CloudEvents and has
gained a positive experience with it so far. The solution must be able to make
routing decisions based on the fields defined in the CloudEvents specification.

Reliable Messaging. The CARU Device is a safety-critical device. Therefore
the solution must be able to give some delivery guarantees for the events it
processes. The current delivery guarantee provided by the used infrastructure
(AWS IoT Core) is At Least Once. The CloudEvents Router must provide
the same or better delivery guarantees.

Support for MQTT 3.1.1. To leverage existing messaging infrastructure on
the CARU Device (Eclipse Mosquitto MQTT Broker) and in the cloud (AWS
IoT Core), the solution must be able to interact with MQTT 3.1.1 endpoints.
This enables a smoother transition from the current state into the direction
of the unified event plane.

Runs on the CARU Device. The device has an ARM Cortex-A7 (armv7l)
1 Core CPU clocked at 198 - 528 MHz, 500 MB RAM, and runs a Yocto
Linux.
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Modularity. The solution should be adaptable to different deployment envi-
ronments. Additional messaging protocols should be easy to add.

Rust Programming Language (optional). CARU wanted to gain experi-
ence with Rust as an alternative to C/C++.

After the evaluation criteria had been defined, ten existing solutions were an-
alyzed.4 Out of these ten solutions, two (Apache Camel and Node-RED) looked
promising. However, both of them do not support CloudEvents out-of-the-box;
it is possible to extend them to do so. Unfortunately, their resource require-
ments were incompatible with the available resources on the CARU Device. As
the hardware was already in production and used by customers, upgrading it to
satisfy the resource requirements was not an option.

For these reasons, we decided to design and implement a specialized, stateless
CloudEvents Router in Rust. Messages are only stored by the incoming and
outgoing message channels and never persisted in the CloudEvents Router itself.
This eases the deployment of the CloudEvents Router, especially in the cloud; its
horizontal scaling is simplified. Furthermore, this design reduces the complexity
of the router itself. A negative consequence of this architectural decision is that
all important messages have to be persisted before they are processed by the
CloudEvents Router, e.g., by an underlying message broker.

3.2 CloudEvents Router Architecture

For our implementation of the CloudEvents Router, we chose the Microkernel
architecture[5]. The Microkernel pattern is commonly used as the architectural
foundation of modern operating systems. A prominent example is Linux. Our
Microkernel defines the interfaces to the four plugin types that implement the
bulk of the functionality. The four plugin types are Scheduler, Configuration-
Loader, Router, and Protocol-Port.

Besides the four plugin interfaces, the kernel only consists of a small amount
of glue code that facilitates the data flow between the plugins. Because the
plugins are defined through their interfaces, a specific plugin type can be im-
plemented in different ways. The users can then choose the implementation for
each plugin type based on their specific use cases.

One reason for choosing the Microkernel pattern was the ability to adapt
the router to different deployment environments easily. In the embedded Linux
environment of the CARU Device, for example, the router could use a different
Configuration-Loader plugin implementation than in the cloud. On the device,
the loader implementation could read the configuration from a file while the
loader implementation in the cloud fetches it from a database. The modular
system design also allows adding support for new messaging protocols by writ-
ing plugins that implement the Protocol-Port plugin interface. It also helps to

4 The ten analyzed messaging products are: CloudEvent Router and Gateway, Knative
Eventing v0.9, Pacifica Dispatcher v0.2.3, Serverless Event Gateway v0.9.1, Ama-
zon Simple Notification Service, Apache Camel v2.24.2, Crossbar.io v19.10.1, D-Bus
v1.12, Node-RED v1.0.1, RabbitMQ v3.8[2]



8 Linus Basig, Fabrizio Lazzaretti, Reto Aebersold, and Olaf Zimmermann

optimize the size of the executable by only including the plugins that are re-
quired for a specific use case. In Fig. 2, for example, the CloudEvents Router
on the device is only required to communicate with the MQTT protocol, while
the CloudEvents Router in the cloud has to support both MQTT and Amazon
SQS.

3.3 Implementation: Rust SDK for CloudEvents

When our project started, there was no suitable Rust Software Development
Kit (SDK) to work with CloudEvents, so we built our own to implement the
open source CloudEvents Router. Later on, we had the opportunity to evolve
this SDK and co-design the official CloudEvents Rust SDK5 in the name of the
CNCF Serverless Working Group.

4 Delivery Guarantees and their Implementations

This section investigates the reliable routing process of the CloudEvents Router
and explains why the At Least Once delivery guarantee was chosen. Before doing
so, we recapitulate how reliability is defined in the context of software engineering
in general and messaging systems in particular.

ISO 25010 is a suite of standards defining eight characteristics of quality for
software engineering and systems[14]. Reliability is one of these eight system/
software product quality characteristics. Availability is a sub-characteristic of
reliability and reflects the degree to which a system is operational and accessible.
Reliability requires that an action is completed as intended, while availability just
requires that the system is operational and reacts to requests somehow[14,17].

In messaging systems, reliability is often defined as a non-functional prop-
erty, e.g., in MQTT as Quality of Service (QoS)[1]. QoS, in a broader context,
often describes much more than just reliability[12,13,17,19]. In our context, re-
liability is primarily concerned with not losing messages during transport, and
with preserving the order of subsequently sent messages during delivery. Dirty
reads or other inconsistencies of messages usually are not in scope.

4.1 Reliable Event Routing with the CloudEvents Router

To address the business requirements in the AgeTech domain (Section 2), the
CloudEvents Router should be able to route messages between different channels
(e.g., MQTT topics, Amazon SQS queues) in a reliable fashion. This means that
messages are routed whenever possible (i.e., the configuration is correct, and
the destination is ready to accept messages). They are not lost even in case the
router crashes.

Fig. 3 shows a simplified example in which it is critical that events are not lost.
The embedded classifier of the Voice Recognition Service detects the keyword

5 https://github.com/cloudevents/sdk-rust

https://github.com/cloudevents/sdk-rust
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Help and emits the Keyword Recognized Event (see Listing 1). The CloudEvents
Router on the Device then applies its routing rules and forwards the event to
the Call Service on the device and the CloudEvents Router in the Cloud. The
router in the cloud applies its routing rules and forwards the event to the Alarm
Receiving Center (ARC) that assigns the alarm to a call taker and prepares
him/her for the incoming call. In the meantime on the device, the Call Service
initiates a call to the ARC over the cellular network.

Fig. 3. Example Use Case that Requires Reliability

The literature and most protocols define a common set of delivery guaran-
tees: At Most Once, Exactly Once, At Least Once[9,11]. A first step towards im-
plementing cross-protocol reliable routing was to select a protocol-independent
delivery guarantee. With such a delivery guarantee defined, the CloudEvents
Router can route messages between message channels that use the same or dif-
ferent messaging protocols while preserving the delivery guarantee.

Most protocols and messaging systems provide subscription- or publication-
based delivery guarantees; on the contrary, we propose a single delivery guarantee
on the channel-level. A property called ”delivery guarantee” should be defined
on the channel to remove any confusion as to what guarantees can be expected
from any given channel. This property should be used to specify how reliable a
channel is. A declarative specification can be added to the messaging contract to
signal what the receiver can expect. A producer then knows how it must publish
messages to the channel. However, not all protocols support all options, and so
in practice, not all ”delivery guarantee” values make sense for each protocol.

4.2 Different Approaches to Reliable Event Routing (Options)

A stateless router such as the CloudEvents Router should be able to forward
event messages from an inbound channel to one or more outbound channels
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according to predefined routing rules. All three stated delivery guarantees from
Section 4.1 should ideally be supported.

The following examples show the case of one incoming and two outgoing
message channels. Message transmission may involve one or more messaging
systems (brokers).

At Most Once. We start with the simplest delivery guarantee: At Most Once.
This delivery guarantee does not satisfy the business need of this router, as
the business requires that every message reaches the destination and will be
processed there. The flow for a router with At Most Once semantics is shown in
Fig. 4a: 1. First, the router gets a message from an incoming channel and then
2., 3. publishes it to all subscribers.

(a) At Most Once Delivery
The message is sent in a fire-and-forget
mode; no acknowledgments are sent or
waited for.

(b) At Least Once Delivery
The acknowledgment (ACK) has to arrive in
a certain time frame. If this does not hap-
pen, the message will be sent again.

Fig. 4. Routing with Different Delivery Guarantees

At Least Once. This flow guarantees that every message is transmitted to the
subscriber at least once; duplicates are permitted. The flow for a router with
At Least Once is shown in Fig. 4b. The steps are: 1. The incoming messaging
component sends the messages to the router. 2., 3. The message is then sent
to the subscribers. 4., 5. The router waits for the acknowledgments from the
subscribers. 6. After the acknowledgments are received, the router will know
that the message was delivered, enabling it to send the acknowledgment to the
sending component.

If any of the steps is not successful or a service crashes during the processing,
the sender will restart the process after a timeout. The timeout is reached when
the sender does not receive an acknowledgment in the expected time frame. In
this case, the sender will retry to send the message to the receiver, which will
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result in a restart of this process. The routing process only ends if the last step,
the acknowledgment from the router to the sender (Step 6), was successful. This
causes the message to be deleted from the incoming channel, which completes
the routing[9].

Exactly Once. This delivery guarantee is hard to achieve, especially when
involving different messaging protocols or products. One challenge is to define
a point in the transmission process when the transaction of sending a message
is completed. In Exactly Once, this point has to be coordinated between all
participants. If that does not happen (e.g., a participant crashes or does not
respond), the message may be submitted multiple times or not at all[9,20,22].
The Two-Phase Commit protocol[23] can help to overcome this challenge. It
describes how to persist data on multiple machines with the help of a global
system transactions, which comes at a price. The process can still fail for some
edge cases and requires a coordinated state that all participants agree upon. This
is not feasible in our project and business context. An Exactly Once stateless-
routing can work for specific protocols, such as Kafka that provide a central
coordinator that controls and performs a global commit operation[3,8,18].

4.3 How Common Protocols Implement Delivery Guarantees

We analyzed the messaging protocols for which a protocol binding is defined in
the CloudEvents specification. At the time of writing, the specification contained
such bindings for MQTT, AMQP, WebHook over HyperText Transfer Protocol
(HTTP), Neural Autonomic Transport System (NATS), and Kafka[6]. During
the analysis we compared the strategies for providing reliable messaging in these
protocols and studied whether it would be possible to combine them in a reliable
CloudEvents Router.

We were able to categorize the five protocols into two categories: message-
oriented and stream-oriented protocols. Both categories provide similar delivery
guarantees, but they take different approaches[3].

Message-Oriented Protocols. Message-oriented protocols provide delivery
guarantees on a per-message basis. The receiver sends an acknowledgment for
each transferred message (when guaranteeing At Least Once delivery). To achieve
an Exactly Once delivery guarantee, the protocols require the receiver to re-
member already received messages to prevent duplicates until extra steps are
performed to safely remove the message from both the sender and the receiver.
MQTT, AMQP, WebHook over HTTP belong to this category of protocols.

Stream-Oriented Protocols. Stream-oriented protocols provide delivery
guarantees on a stream of messages where each message can be identified by
its position in the stream. The advantage of a stream-oriented protocol is that
not every single message must be acknowledged when reading from the stream.
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Instead, the receiver can acknowledge its position in the stream from time
to time by sending the position of the last successfully processed message.
This results in a lower network overhead but requires a central server that
manages the stream. For writing to the stream, the same mechanisms as for the
message-oriented protocols are used (acknowledgments for At Least Once and
de-duplication for Exactly Once). The Kafka protocol and NATS Streaming
protocol, which is built on top of the NATS protocol, fall into this category.

4.4 Selection of At Least Once for the CloudEvents Router

As the goal of CARU is to achieve safe message routing so that every message
reaches its destination, an At Most Once delivery guarantee is not appropriate.
So a decision between At Least Once and Exactly Once had to be taken.

We decided to implement an At Least Once delivery guarantee because of the
following reasons: (1) The significant complexity of a Two-Phase Commit that is
required to achieve an Exactly Once delivery guarantee. (2) The lacking support
or non-interoperable implementations of Exactly Once in the targeted messaging
protocols (see Section 4.3). (3) The statefulness that Exactly Once requires. (4)
The possibility to deduplicate an event based on the id field defined in the
CloudEvents specification (see next paragraph).

If the solution requirements call for strict Exactly Once delivery semantics,
messages can be transferred with an At Least Once delivery guarantee, ensur-
ing Exactly Once processing at the receiver with the help of a stateful Message
Filter[11]. Implementing this pattern is straightforward with CloudEvents be-
cause these events contain the id field that can be used to detect events that
were retransmitted and to prevent their reprocessing[6].

4.5 Implementation and Validation of At Least Once Channels

Implementation. Our router is able to route messages from one channel to zero
or more channels while providing an At Least Once or no delivery guarantee (the
latter is called Best Effort) for each route.

Implementing the AMQP plugin and upgrading from the Best Effort delivery
guarantee to the At Least Once delivery guarantee in our Microkernel was
straightforward. However, the upgrade from the Best Effort delivery guarantee
to At Least Once on the MQTT plugin turned out to be rather challenging (see
Section 5 for more information).

Validation. Different test methods were applied, from unit tests to integration
tests. The main test objective was to gain confidence that the router works as
intended and does not loose any messages even under harsh conditions. The
most assuring test was an integration and reliability test that we ran both with
the At Least Once and with the Best Effort delivery guarantee. This test setup
is visualized in Fig. 5. The setup was an automated script that deploys the
CloudEvents Router in a Kubernetes cluster and generates 100’000 events. The
router consumes them on Channel A, and publishes them on Channel B. During
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the test, the single router instance was killed every 10 seconds by chaoskube and
restarted by Kubernetes. chaoskube is a chaos engineering tool that periodically
kills random instances in a Kubernetes cluster6 (in our case, always the router
instance). The messages were generated in a 1ms interval during the test so that
the test ran for at least 100 seconds. With the At Least Once delivery guarantee,
all messages were routed successfully to the output channel. Not a single message
was lost. In the Best Effort routing mode, an average of 7’000 messages were lost
per test run. The results differed widely depending on the used protocol-plugins.

With At Least Once, we can be sure that no events get lost while still provid-
ing a good balance between reliability and performance. However, ”sure” means
that no messages were lost in our specific test scenarios. These results give us,
CARU, and other potential users confidence that the CloudEvents Router works
properly. Still, our test scenarios are not proofs in a mathematical sense.

Fig. 5. Integration Test Setup of the Router Inside the Kubernetes Cluster

5 Lessons Learned

The messaging protocols that we worked with handle reliability in slightly dif-
ferent ways. Our router implementation demonstrates that the current design
works for MQTT and AMQP; we are confident that it can leverage other mes-
saging protocols as well[2,3]. In this section, we report two of our learnings and
findings w.r.t. the delivery guarantees of existing messaging middleware.

Non-Transient Error Handling. All error scenarios merely take transient
errors into account. Our router design introduces a retry mechanism; however,
there are also permanent errors that can not be resolved by just retrying to route
a message if its routing failed. This could, for example, be caused by a wrong
configuration or a malformed message. In such a case, the message can never be
delivered. Such a problem can lead to a crash loop of a receiver, especially when
the delivery guarantees are considered: Without taking the delivery guarantee(s)
into account, these messages would be dropped; with a delivery guarantee such as
At Least Once, the message will be resent and re-consumed over and over. In this

6 https://github.com/linki/chaoskube

https://github.com/linki/chaoskube


14 Linus Basig, Fabrizio Lazzaretti, Reto Aebersold, and Olaf Zimmermann

scenario, some additional error handling is required; resilience measurements are
an important concern. This is crucial when introducing retries to handle failures.
Two already applied mechanisms in the CloudEvents Router for that is a Dead
Letter Channel[11] and a health-check endpoint to integrate a Watchdog[9].

MQTT Reliability Underspecified and Not Configurable. Our most sig-
nificant and somewhat surprising lesson learned was that MQTT behaves differ-
ently from most other protocols (see Section 4.3) when looking at the At Least
Once and Exactly Once delivery guarantees.

In MQTT, the At Least Once and Exactly Once semantics are not defined as
strictly as in most analyzed protocols: MQTT does not define whether a message
should be acknowledged before or after the application has processed it.

The specification of the protocol only contains a non-normative example
in which the messages are acknowledged before they are processed[1]. As a re-
sult, many MQTT libraries acknowledge the messages before they are processed.
Even worse, they do not offer an option to change that behavior. Acknowledging
a message before it is successfully processed can result in message loss if the
application crashes before or during the processing of the message.

The CloudEvents Router uses the Eclipse Mosquitto library to communicate
over MQTT. Unfortunately, this library also acknowledges messages before they
are processed successfully. We had to fix this issue with a small code change
which is currently an open pull request on the Eclipse Mosquitto repository.7

6 Related Work

Bernstein and Newcomer describe how client-server communication over queues
can be processed with Exactly Once semantics in an abstract way[4]. Their ex-
amples describe a client that requests some processing via a queue by a server
and gets a response in another queue. For this scenario, the possible error states
are specified. Later, interactions of queues with other transactional systems that
are irreversible are analyzed, and transactional processing is discussed.

Gruener, Koziolek, and Rückert measured resilience of different MQTT bro-
kers under unreliable network conditions and show how a message can get
lost[10]. Tai, Mikalsen, Rouvellou, and Sutton describe a way of adding con-
ditions not to the message channel but to the message itself[21]. Application-
specific conditions are then handled by the messaging middleware.

Steen and Tanenbaum give a broad overview of many distributed system
concepts. For instance, they present concepts for error recovery and fault-
tolerance[20]. Lampson, Lynch and, Søgaard-Andersen show proof for two At
Most Once Message Delivery Protocols with additional order guarantee[16].

In ”Exactly Once Delivery and Transactional Messaging in Kafka”, the de-
sign of Kafka’s Exactly Once strategy is described[8]. While this work is not
protocol-independent it presents relevant general concepts. In the context of

7 https://github.com/eclipse/mosquitto/pull/1932

https://github.com/eclipse/mosquitto/pull/1932
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Simple Object Access Protocol (SOAP) based Web services, there were multiple
attempts to standardize reliability with the standards WS-ReliableMessaging
and WS-Reliability[7,15].

7 Summary and Outlook

In this experience report, we presented the analysis, design, implementation, and
validation of a versatile message router that natively supports events structured
according to the CloudEvents specification. Our CloudEvents Router introduces
standardized event routing targeting the software landscape of the AgeTech
startup CARU; this landscape reaches from an embedded microcontroller on
the edge to public cloud services from AWS. The introduction of CloudEvents
in all systems helps CARU to safely evolve the structure of their events and
reduces friction when developers have to work on different components of their
system landscape.

In the CloudEvents Router architecture, special attention was paid to mod-
ularity, scalability, and reliability. To support flexible deployments while ensur-
ing a minimal footprint, the Microkernel pattern was chosen as architectural
foundation. This design makes it possible to select deployment-specific plugins
for configuration access and messaging protocol integration to make the exe-
cutable as small as possible. To ensure scalability and minimize complexity, we
decided to leverage existing messaging infrastructure and to keep the CloudE-
vents Router stateless by tasking services like Amazon SQS, AWS IoT Core, and
Eclipse Mosquitto to store and transport messages reliably. As many events pro-
duced by the CARU Device are safety-relevant, providing a delivery guarantee
for events entrusted to the router was particularly important. Because of the
desired statefulness and the limited protocol interoperability of Exactly Once,
implementing At Least Once was the only feasible option.

When analysing the reliability properties of the messaging protocols in the
CloudEvents specification and the implementation of At Least Once, we discov-
ered some unexpected properties. MQTT in particular provides rather limited
guarantees for At Least Once and Exactly Once.

The presented CloudEvents Router design and its open source implemen-
tation provide a solid foundation for realizing the vision of a unified event
plane. To further advance this vision, we have identified three development top-
ics for our future work: (1) Implement the new CloudSubscriptions Discovery
API and CloudEvents Subscription API specifications. (2) Integrate the CloudE-
vents Router into the monitoring solutions from the CNCF. (3) Adopt the asyn-
chronous Application Programming Interface (API) of Rust to lower the resource
requirements even further.
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